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�We analyze the impacts of electric vehicles (EVs) on the German power system.
� In a fully user-driven charging mode, peak load concerns arise.
� Under cost-driven charging, emission-intensive power generation is increased.
� An intermediate charging mode may reconcile user preferences and system needs.
� With respect to CO2, EVs should be linked to additional renewable deployment.
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We analyze the impacts of future scenarios of electric vehicles (EVs) on the German power system, draw-
ing on different assumptions on the charging mode. We find that the impact on the load duration curve
strongly differs between charging modes. In a fully user-driven mode, charging largely occurs during day-
time and in the evening, when power demand is already high. User-driven charging may thus have to be
restricted because of generation adequacy concerns. In contrast, cost-driven charging is carried out dur-
ing night-time and at times of high PV availability. Using a novel model formulation that allows for sim-
ulating intermediate charging modes, we show that even a slight relaxation of fully user-driven charging
results in much smoother load profiles. Further, cost-driven EV charging strongly increases the utilization
of hard coal and lignite plants in 2030, whereas additional power in the user-driven mode is predomi-
nantly generated from natural gas and hard coal. Specific CO2 emissions of EVs are substantially higher
than those of the overall power system, and highest under cost-driven charging. Only in additional model
runs, in which we link the introduction of EVs to a respective deployment of additional renewables, elec-
tric vehicles become largely CO2-neutral.

� 2015 Elsevier Ltd. All rights reserved.
1. Introduction

The use of electric vehicles (EVs) is set to increase substantially
in many countries around the world [1]. EV may bring about
numerous benefits, such as lower emissions of various air pollu-
tants and noise, increasing energy efficiency compared to internal
combustion engines, and the substitution of oil as the main pri-
mary energy source for road transport. A massive uptake of electric
vehicles may also have a strong impact on the power system. The
effects on power plant dispatch, system peak load, and carbon
emissions depend on both the power plant fleet and the charging
mode of electric vehicles (cf. [2]).

In this paper, we study possible impacts of future electric vehi-
cle fleets on the German power system. The German case provides
an interesting example as the government has announced ambi-
tious targets of becoming both the leading manufacturer and the
lead market for electric vehicles in the world [3]. Moreover, the
German power system undergoes a massive transformation from
coal and nuclear toward renewable sources, also referred to as
Energiewende. We carry out model-based analyses for different sce-
narios of the years 2020 and 2030, building on detailed vehicle uti-
lization patterns and a comprehensive power plant dispatch model
with a unit commitment formulation. We are particularly inter-
ested in the impacts of electric vehicles on the system’s load dura-
tion curve, the dispatch of power plants, the integration of
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1 We only consider G2V and abstract from V2G applications, as previous analyses
have shown that the potential V2G revenues are unlikely to cover related battery
degradation costs (cf. [7]). Kempton and Tomić [21], Andersson et al. [22], Lopes et al.
[23], and Sioshansi and Denholm [24] argue that V2G may be viable for providing
spinning reserves and other ancillary services.
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fluctuating renewables, and CO2 emissions under different
assumptions on the mode of vehicle charging.

Previous research has analyzed various interactions of electric
mobility and the power system, covering purely battery-electric
vehicles (BEV), plug-in hybrid electric vehicles (PHEV), and/or
range extender electric vehicles (REEV). Kempton and Tomić [4]
first introduce the vehicle-to-grid (V2G) concept and estimate
V2G-related revenues in various segments of the U.S. power mar-
ket. In the wake of this seminal article, a broad strand of related
research has evolved. Hota et al. [2] review numerous model anal-
yses on the power system impacts of electric vehicles and group
these into different categories, e.g., with respect to the assumed
type of grid connection and the applied methodology.

One strand of the literature deals with power system implica-
tions of different charging strategies. Wang et al. [5] examine inter-
actions between PHEVs and wind power in the Illinois power
system with a unit commitment approach. They show that smart
coordinated charging leads to a reduction in total system cost
and smoother conventional power generation profiles. Kiviluoma
and Meibom [6] model the power costs that Finnish owners of
electric vehicles would face by 2035. In case of optimized charging,
power prices turn out to be rather low as cheap generation capac-
ities can be used. Loisel et al. [7] analyze the power system impacts
of different charging and discharging strategies of battery-electric
vehicles for Germany by 2030. Distinguishing between
grid-to-vehicle (G2V) and vehicle-to-grid (V2G), they also highlight
the benefits of optimized charging, yet conclude that V2G is not a
viable option due to excessive battery degradation costs.
Kristoffersen et al. [8] as well as Juul and Meibom [9] and Juul
and Meibom [10] also find that EVs provide flexibility mostly by
optimized charging activities and not so much by discharging
power back to the grid.

Another strand of the literature focuses on the interactions of
electric vehicles with fluctuating renewables and emission
impacts. Lund and Kempton [11] analyze the integration of vari-
able renewable sources into both the power system and the trans-
port sector. They find that EVs with high charging power can
substantially reduce renewable curtailment and CO2 emissions.
Göransson et al. [12] carry out a comparable case study for
Denmark, also concluding that system-optimized PHEV charging
can decrease net CO2 emissions. In a more stylized simulation for
Denmark, Ekman [13] highlights the potential of EVs to take up
excess wind power. Guille and Gross [14] focus their analysis on
PHEV-related potentials for smoothing variable wind generation.
Sioshansi and Miller [15] apply a unit commitment model to ana-
lyze the emission impacts of PHEVs with regard to CO2, SO2, and
NOx in the Texas power system. Imposing an emission constraint
on PHEV charging activities, they show that specific emissions
may be reduced below the ones of respective conventional cars
without increasing recharging costs substantially. For the case of
Ireland, Foley et al. [16] show that off-peak charging is the most
favorable option with respect to cost and CO2 emissions. Using
an agent-based model, Dallinger et al. [17] find that smart EV
charging can facilitate the integration of intermittent renewables
both in California and Germany by 2030. Schill [18] analyzes the
impacts of PHEV fleets in an imperfectly competitive power market
with a Cournot model and finds that both welfare and emission
impacts depend on the agents being responsible for charging the
vehicles, and on the availability of V2G. Doucette and McCulloch
[19] notes that the CO2 mitigation potential of EVs is highly depen-
dent on the existing power plant portfolio and concludes that addi-
tional decarbonization efforts might be needed to obtain CO2

emission reductions.
We aim to contribute to the cited literature in several ways.

First, the unit commitment approach used here is particularly suit-
able for studying the interactions of EVs with fluctuating
renewables. It considers the limited flexibility of thermal power
generators and is thus more suitable to capture the potential flex-
ibility benefits of EVs compared to linear dispatch models such as
[11–13,18,7]. Next, the hourly patterns of electric vehicle power
demand and charging availabilities used here are considerably
more sophisticated than in some of the aforementioned studies,
e.g., [13,16]. In contrast to, for example, Loisel et al. [7], we more-
over consider not only BEV, but also PHEV/REEV. What is more, we
do not rely on a stylized selection of hours in particular seasons or
load situations (e.g., [5]), but apply the model to all subsequent
hours of a full year. We further present a topical case study of
the German Energiewende for the years 2020 and 2030 with
up-to-date input parameters as well as a stronger deployment of
renewables than assumed in earlier studies, and with a full consid-
eration of the German nuclear phase-out. Next, we do not only dis-
tinguish between the two stylized extreme cases of fully
cost-optimized and completely non-coordinated charging, but also
include additional analyses with intermediate modes of charging,
which appear to be more realistic. This is made possible by draw-
ing on a novel formulation of EV charging restrictions. Finally, we
study the effects of electric vehicles not only for a baseline power
plant fleet, but also for cases with adjusted renewable generation
capacities. This allows assessing the potential benefits of linking
the introduction of electric mobility to a corresponding expansion
of renewable power generation.

The remainder is structured as follows. Section 2 introduces the
methodology. Section 3 describes the scenarios and input parame-
ters. Model results are presented in Section 4. The impacts of
model limitations on results are critically discussed in Section 5.
The final section concludes. The Appendix A.1 presents a descrip-
tion of the optimization model, dispatch outcomes without EVs,
and the results of additional sensitivity analyses.
2. Methodology

We use a numerical optimization model that simultaneously
optimizes power plant dispatch and charging of electric vehicles.
The model determines the cost-minimal dispatch of power plants,
taking into account the thermal power plant portfolio, fluctuating
renewables, pumped hydro storage, as well as grid-connected elec-
tric vehicles. The model has an hourly resolution and is solved for a
full year. It includes several inter-temporal constraints on thermal
power plants, such as minimum load restrictions, minimum
down-time, and start-up costs. The model is formulated as a mixed
integer linear program (MILP) with binary variables on the status
of thermal plants. In addition, there are special generation con-
straints for thermal plants that are operated in a combined heat
and power mode, depending on temperature and time of day.

The model draws on a range of exogenous input parameters,
including thermal and renewable generation capacities, fluctuating
availability factors of wind and solar power, generation costs and
other techno-economic parameters, and the demand for electricity
both in the power sector and related to electric vehicle charging. As
for the latter, we draw on future patterns of hourly power con-
sumption and charging availabilities derived by Kasten and
Hacker [20]. Hourly demand is assumed not to be price-elastic.
Endogenous model variables include the dispatch of all generators,
electric vehicle charging patterns, dispatch costs, and CO2

emissions.1



3 In doing so, we draw on the scenarios developed by Kasten and Hacker [20] in the
context of the European research project DEFINE. https://www.ihs.ac.at/projects/
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We use a standard unit commitment model approach. The basic
formulation is provided in Appendix A.1. In the following, we high-
light the equations that deal with electric vehicles. EV-related sets,
parameters and variables are listed in Table 6 in Appendix A.1.
Exogenous parameters are in lower case letters, endogenous con-
tinuous variables have an initial upper case letter, and binary vari-
ables are completely set in upper case letters.The set ev represents
the different EV profiles in the model. Eq. (EV1) is the cumulative
EV energy balance. The battery charge level Chargelevev ;t is deter-
mined as the level of the previous period plus the balance of charg-
ing and (price-inelastic) consumption in the actual period. The
charge level of PHEV/REEV is also influenced by conventional fuel
use Phevfuelev;t . Importantly, only electric vehicles of the
PHEV/REEV type may use conventional fuels, so Phevfuelev ;t is set
to zero for purely battery-electric vehicles (EV2). In order to ensure
a preference for using electricity in PHEV/REEV, we penalize the

use of conventional fuels with penaltyPhevfuel in the objective func-
tion (Eq. (1) in Appendix A.1). Eqs. (EV3) and (EV4) constitute
upper bounds on the cumulative power of vehicle charging and
the cumulative charge level of vehicle batteries. Note that the
parameter chargemaxev ;t assumes positive values only in periods
in which the EV is connected to the grid. Non-negativity of the
variables representing charging, charge level, and conventional
fuel use is ensured by Eqs. (EV5)–(EV7). In addition, the model’s
energy balance (Eq. (14) in Appendix A.1) considers the additional
electricity that is required for charging electric vehiclesP

evChargeev ;t in each hour.

Chargelevev;t ¼ Chargelevev;t�1 þ Chargeev;tgev � consev;tnev

þ Phevfuelev;t 8ev ; t ðEV1Þ
Phevfuelev;t ¼ 0 if phevev ¼ 0 8ev ; t ðEV2Þ
Chargeev ;t 6 chargemaxev;tnev 8ev; t ðEV3Þ
Chargelevev;t 6 batcapevnev 8ev ; t ðEV4Þ
Chargeev ;t P 0 8ev ; t ðEV5Þ
Chargelevev;t P 0 8ev ; t ðEV6Þ
Phevfuelev;t P 0 8ev ; t ðEV7Þ

Eqs. (EV8) and (EV9) are only relevant in the case of not fully
cost-driven charging, i.e., if fastchargegoal is exogenously set to a
positive value. Eq. (EV8) makes sure that the vehicle will be
charged as fast as possible after it is connected to the grid. This
is operationalized by determining the difference between the
desired and the current battery charge level. If the battery level
is below the target, fast charging is enforced, i.e., the binary vari-
able FULLCHARGEev ;t assumes the value 1. Eq. (EV9) then enforces
charging to be carried out with full power. Note that this model
formulation is very flexible. It allows not only representing the
two extreme modes of charging, i.e., fully user-driven or fully
cost-driven2 charging; by assigning any real number between 0
and 1 to, fastchargegoal any desired target level of fast battery charg-
ing may be specified. For example, if fastchargegoal is set to 0.5, vehi-
cle batteries have to be charged with full power until a charging level
of 50% is reached. After that, the remaining battery capacity may be
charged in a cost-optimal way. We focus on the two extreme charg-
ing modes in the model analyses, i.e., set fastchargegoal to 0 (fully
cost-driven) or 1 (fully user-driven), respectively, in most scenarios.
In addition, we carry out additional analyses with values of 0.25, 0.5
and 0.75 (see Section 3).
2 According to the objective function (1) presented in Appendix A.1, the model
minimizes the costs of dispatch. This includes fuel and CO2 costs as well as start-up
costs. Capital costs are not relevant for the optimization under the assumption of
existing generation capacities.
fastchargegoal � batcapevnev � Chargelevev ;t 6 ðbatcapevnev

þ 1ÞFULLCHARGEev;t 8ev ; t ðEV8Þ
FULLCHARGEev;tchargemaxev ;tnev 6 Chargeev;t 8ev ; t ðEV9Þ
3. Scenarios and input parameters

We apply the dispatch model to various scenarios. First, we dis-
tinguish different developments with regard to electric vehicle
deployment:3 a reference case without electric vehicles, a
Business-as-usual (BAU) scenario and an ‘‘Electric mobility+’’ (EM+)
scenario for the years 2020 and 2030. The BAU scenario assumes
an EV stock of 0.4 million in 2020 and 3.7 million in 2030. The EM+

scenario assumes a slightly increased deployment of electric vehicles
with a stock of 0.5 million EV by 2020 and 4.8 million by 2030. This
is made possible by additional policy measures such as a feebate sys-
tem, adjusted energy taxation and ambitious CO2 emission targets
(for further details, see [20]). These scenarios are solved for all hours
of the respective year. In addition, we carry out six additional model
runs for the EM+ scenario of the year 2030 with additional renewable
capacities (RE+). These capacities are adjusted such that their yearly
generation exactly matches the yearly power demand of EVs. We
assume that the additional power either comes completely from
onshore wind, or completely from PV, or fifty–fifty from onshore
wind and PV.

Within the scenarios BAU, EM+, and RE+, we further distinguish
the two extreme charging modes described in Section 2. EVs may
either be charged in a completely user-driven mode or in a com-
pletely cost-driven mode. User-driven charging reflects a setting
in which all electric vehicles are fully recharged with the maxi-
mum available power as soon as these are connected to the grid.
This mode could also be interpreted as a ‘‘plug-in and forget’’
charging strategy by the vehicle owners. In contrast, the
cost-driven charging mode reflects a perfectly coordinated way of
charging that minimizes power system costs. It could also be inter-
preted as system-optimized charging or market-driven charging
under the assumption of a perfectly competitive power market.
Such a charging strategy could be enabled by smart charging devices
and may be carried out by power companies, specialized service
providers, or vehicle owners themselves. In the real world, some
intermediate modes of charging between these extremes may mate-
rialize. To approximate these, the 2030 EM+ scenarios are addition-
ally solved with fast charging requirements of 25%, 50%, and 75%,
respectively. Table 1 gives an overview of all model runs.

As regards exogenous input parameters, we draw on several
sources. First, we use DIW Berlin’s power plant data-base, which
includes a block-sharp representation of thermal generators in
Germany. Blocks with a capacity smaller than 100 MW are
summed up to 100 MW blocks in order to reduce numerical com-
plexity. Assumptions on the future development of German power
plant fleet are derived from the so-called Grid Development Plan
(NEP).4 This plan is drafted on a yearly basis by German transmission
system operators for a time horizon of 10 and 20 years. After a series
of revisions and public consultations, the NEP serves as the basis for
German federal network planning legislation. We largely draw on
the 2013 version [25] regarding thermal and renewable generation
capacities, fuel and carbon prices (Table 2), and specific carbon
emissions.5
define/.
4 Netzentwicklungsplan (NEP) in German.
5 More precisely, we draw on the medium projections called ‘‘B 2023’’ and ‘‘B

2033’’, which are deemed to be the most likely scenarios. We also draw on the 2012
and 2014 versions of the NEP in some instances, e.g., regarding 2010 generation
capacities as well as 2012 offshore wind capacities [26,27].

https://www.ihs.ac.at/projects/define/
https://www.ihs.ac.at/projects/define/


Table 2
Fuel and carbon prices.

Unit 2010 2020 2030

Lignite EUR2010/MW hth 1.5 1.5 1.5
Hard coal EUR2010/MW hth 10.4 9.9 10.5
Natural gas EUR2010/MW hth 21.0 24.8 26.2
Oil EUR2010/MW hth 38.3 46.7 57.0
CO2 certificates EUR2010/t 13.0 23.8 40.8
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Fig. 1. Installed net generation capacities.

Table 3
Exogenous parameters related to electric vehicles.

2020 2030

BAU EM+ BAU EM+

Number of vehicles (million)
BEV 0.1 0.1 0.9 1.0
PHEV/REEV 0.3 0.4 2.9 3.7
Overall 0.4 0.5 3.7 4.8

Cumulative battery capacity (GW h)
BEV 2.4 2.8 21.7 25.2
PHEV/REEV 3.0 3.9 27.6 35.9
Overall 5.4 6.7 49.2 61.1

Cumulative average hourly charging capacity (GW)
BEV 0.3 0.3 2.9 3.1
PHEV/REEV 0.7 0.8 8.7 10.3
Overall 1.0 1.1 11.6 13.3

Table 1
Scenario matrix.

EV
scenario

Charging
mode

Generation
capacities

2010 2020 2030

No EVs Baseline � � �
RE+ 100% Wind �

50% Wind/PV �
100% PV �
100% Wind �
50% Wind/PV �
100% PV �

BAU User-driven Baseline � �
Cost-driven � �

EM+ User-driven Baseline � �
75% fast charge �
50% fast charge �
25% fast charge �
Cost-driven � �
User-driven RE+ 100% Wind �

50% Wind/PV �
100% PV �

Cost-driven 100% Wind �
50% Wind/PV �
100% PV �
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As the NEP 2013 only provides generation capacities for the
years 2011, 2023, and 2033, we linearly interpolate between these
years to derive capacities for 2020 and 2030. Nuclear power is
phased-out according to German legislation. Pumped hydro stor-
age capacity is assumed to stay constant. Overall, thermal genera-
tion capacities slightly decrease until 2030, whereas installed
renewable capacities increase substantially (Fig. 1). CCGT and
OCGT refer to combined or open cycle gas turbines, respectively.
We also include an expensive, but unlimited backstop peak gener-
ation technology in order to ensure solvability of the model even in
cases of extreme vehicle charging patterns.

Hourly availability factors of onshore wind and PV are derived
from publicly available feed-in data of the year 2010 provided by
German TSOs. We project hourly maximum generation levels of
these technologies for the years 2020 and 2030 by linearly scaling
up to the generation capacities of the respective year.6 Hourly
power demand is assumed not to change compared to 2010 levels.
We assume a total yearly net consumption of around 561 TW h,
including grid losses, with a maximum hourly peak load of
91.9 GW. As regards other techno-economic parameters such as effi-
ciency of thermal generators, start-up costs, and minimum off-times,
we largely draw on Egerer et al. [28].

All exogenous model parameters related to electric vehicles –
except for the parameter fastchargegoal – are provided by Kasten
and Hacker [20]. The input data includes aggregate hourly power
consumption and maximum charging profiles of 28 vehicle cate-
gories, of which 16 relate to BEV and 12 to PHEV/REEV. Vehicle
6 Offshore wind feed-in data is available for selected projects in the North Sea only.
We derive hourly availability factors from 2012 feed-in data provided by the
transmission system operator TenneT.
categories differ with respect to both their battery capacity and
their typical charging power. All vehicles may be charged with a
net power of 10.45 kW in some hours of the year, as they are
assumed to be connected to (semi-)public fast-charging stations
at least occasionally. Table 3 provides an overview of EV-related
parameters. The cumulative battery capacity in the 2030 is in the
same order of magnitude as the power storage capacity of existing
German pumped hydro storage facilities. Table 3 also includes an
indicative yearly average value of hourly recharging capacities,
which reflects different hourly connectivities to charging stations
and different charging power ratings.
4. Results

4.1. Charging of electric vehicles

The yearly power consumption of electric vehicles in the differ-
ent scenarios is generally small compared to overall power
demand (Table 4). In 2020, the EV fleet accounts for only around
0.1–0.2% of total power consumption. In 2030, EV-related power
consumption gets more significant with up to 7.1 TW h in BAU
and nearly 9.0 TW h in EM+, which corresponds to around 1.3% of
total power consumption, or 1.6%, respectively. In the
user-driven charging modes, the values are generally slightly lower
compared to cost-driven charging because the electric shares of
PHEV/REEV are lower. These electric utility factors are around
55% in the 2020 scenarios, and between 60% (user-driven) and
64% (cost-driven) in the 2030 scenarios. For comparison, Kelly
et al. [29] estimate a utility factor of around 67% based on data



Table 4
Power consumption of electric vehicles.

EV scenario Charging mode Generation capacities EV consumption
(TW h)

Share of total load (%)

2020 2030 2020 2030

BAU User-driven Baseline 0.70 6.92 0.12 1.22
Cost-driven 0.70 7.10 0.12 1.25

EM+ User-driven Baseline 0.88 8.59 0.16 1.51
75% fast charge 8.90 1.56
50% fast charge 8.95 1.57
25% fast charge 8.95 1.57
Cost-driven 0.88 8.95 0.16 1.57
User-driven RE+ 100% Wind 8.54 1.50

50% Wind/PV 8.55 1.50
100% PV 8.59 1.51

Cost-driven 100% Wind 8.95 1.57
50% Wind/PV 8.95 1.57
100% PV 8.95 1.57
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Fig. 2. Average EV charging power over 24 h (2030, EM+).
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from 170,000 vehicles in the U.S. Weiller [30] also determines util-
ity factors for U.S. PHEVs between 50% and 70%, depending on the
battery size and car usage.

While overall power consumption of the assumed EV fleets is
relatively small, hourly charging loads vary significantly over time
and sometimes become rather high. This is especially visible in the
case of user-driven charging, where charging takes place without
consideration of current power system conditions. Here, EVs are
charged as fast as possible given the restrictions of the grid connec-
tion.7 Fig. 2 exemplarily shows the average charging power over 24 h
for the 2030 EM+ scenario for the two extreme charging cases as well
as for the intermediate charging modes, in which at least 25%, 50%,
or 75% of the vehicles’ battery capacities have to be recharged as
quickly as possible after the vehicles are connected to the grid.
User-driven charging results, on average, in three distinct daily load
peaks. These occur directly after typical driving activities. Almost no
charging takes place at night, as EVs are fully charged several hours
after the last evening trip. In contrast, the cost-driven charging mode
allows charging EVs during hours of high PV availability, and shifting
charging activities into the night, when other electricity demand is
low. Overall, the average charging profile is much flatter in the
cost-driven mode compared to the user-driven one.

Even a slight relaxation of the fully user-driven mode, i.e.,
reducing fastchargegoal from 1 to 0.75, results in a substantially
smoothed load profile, while presumably only slightly reducing
the users’ utility. The maximum average charging load peak in
the evening hours accordingly decreases from 4.9 to 3.1 GW.
Reducing fastchargegoal further to 0.5 entails additional smoothing,
with a corresponding reduction of the evening load peak to
2.1 GW.

From a power system perspective, average charging levels of
electric vehicles are less relevant than the peak loads which EVs
induce on the system. Fig. 3 shows the electricity system’s load
duration curve without electric vehicles, i.e., all observed hourly
loads in descending order (right axis). In addition, the sorted addi-
tional loads related to EVs for different charging modes are shown
(left axis).8

Fig. 3 shows that fully user-driven charging generally steepens
the load duration curve of the system, as additional power is
7 We do not consider possible restrictions related to bottlenecks in both the
transmission and the distribution grids, which may pose barriers to both the fully
user-driven and the fully cost-driven charging modes.

8 The Figure shows the differences between sorted load duration curves with and
without EVs for different charging modes. That is, the differences refer to load
deviations between hours with the same position in the load duration curve, but not
necessarily between the same hours, i.e., the index t will typically differ.
mainly required on the left-hand side. That is, user-driven charging
increases the system load during hours in which demand is already
high. On the very left-hand side, the peak load in the fully
user-driven mode increases by around 3.6 GW, compared to only
1.5 GW in the purely cost-driven mode. In contrast, cost-driven
charging largely occurs on the right-hand-side of the load duration
curve, which implies a better utilization of generation capacities
during off-peak hours. We again find a strong effect of even slightly
deviating from the fully user-driven mode: reducing fastchargegoal
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from 1 to 0.75 results in substantial smoothing of the residual load
curve. If this parameter is further reduced to 0.5, the load duration
curve closely resembles the one of the fully cost-driven charging
mode.

It should be noted that the backstop peak technology is
required in the 2030 scenarios under fully user-driven charging
in order to solve the model. That is, the generation capacities
depicted in Fig. 1 do not suffice to serve overall power demand
during peak charging hours. The NEP generation capacities are
exceeded by around 220 MW in the peak hour of the user-driven
2030 BAU scenario, and by around 360 MW in the respective
EM+ scenario. In other words, user-driven charging would raise
severe concerns with respect to generation adequacy and may ulti-
mately jeopardize the stability of the power system with the
assumed EV fleets.
Fig. 4. Dispatch changes relative to scenario without EVs (2020, EM ).
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Fig. 5. Dispatch changes relative to scenario without EVs (2030, EM+).
4.2. Power plant dispatch

The differences in hourly EV charging patterns discussed above
go along with a changed dispatch of the power plant fleet.9 While
EV-related power requirements in the user-driven case mainly have
to be provided during daytime, cost-driven charging allows, for
example, utilizing idle generation capacities in off-peak hours.

Comparing dispatch in the 2020 EM+ scenario to the one in the
case without any electric vehicles in the same year, we find that
the introduction of electric vehicles under cost-driven charging
mostly increases the utilization of lignite plants, which have the
lowest marginal costs of all thermal technologies (Fig. 4).10

Generation from mid-load hard coal plants also increases substan-
tially. These changes in dispatch are enabled by the charging mode,
which allows shifting charging to off-peak hours in which lignite and
hard-coal plants are under-utilized. Under user-driven charging,
power generation from lignite cannot be increased that much, as
charging occurs in periods in which these plants are largely produc-
ing at full capacity, anyway. Instead, generation from hard coal
grows even more than in the cost-driven case. In addition,
user-driven charging increases the utilization of – comparatively
expensive – gas-fired plants, as these are the cheapest idle capacities
in many recharging periods, e.g., during weekday evenings. The uti-
lization of pumped hydro storage decreases slightly under
cost-driven charging, as optimized charging of electric vehicles
diminishes arbitrage opportunities of storage facilities. In contrast,
storage use increases slightly under user-driven charging because
of increased arbitrage opportunities between peak and off-peak
hours.

Fig. 5 shows respective changes in dispatch outcomes for the
2030 EM+ scenario. Compared to 2020, the introduction of electric
vehicles has a much stronger effect in 2030, as the overall number
of electric vehicles is much higher. While the direction of dispatch
changes is largely the same as in 2020, there is a slight shift from
lignite to gas: under cost-driven charging, the relative increase in
the utilization of lignite plants is less pronounced compared to
2020, whereas the utilization of combined cycle gas turbines
(CCGT) is higher. Under user-driven charging, this effect – which
can be explained by an exogenous decrease of lignite plants and
a corresponding increase of gas-fired generation capacities (cf.
Fig. 1) – is even more pronounced, such that most of the additional
power generation comes from CCGT plants. Worth mentioning, the
additional flexibility brought to the system by cost-driven charging
9 We only present dispatch results for the EM+ scenarios of 2020 and 2030 as well
as 2030 RE+. The respective dispatch results in the BAU scenarios are very similar, but
less pronounced.

10 Fig. 8 in the Appendix A.2 shows the dispatch results of the scenarios without EVs,
against which the EV-related dispatch changes presented in Figs. 4–6 may be
compared.
also enables additional integration of energy from renewable
sources. Pumped storage, which is another potential source of flex-
ibility, is accordingly used less in the cost-driven case. It can also
be seen that reducing the fast charging requirement from 100%
to 75% strongly alters the dispatch into the direction of the
cost-driven outcomes. Reducing the requirement to 50% entails lar-
gely the same dispatch as the fully cost-driven charging mode.

In the cases presented so far, we have assumed that the power
plant fleets of the years 2020 or 2030 do not change between the
cases with and without electric vehicles. While this assumption
proves to be unproblematic with respect to overall generation
capacities in the cost-driven charging mode, we are interested in
how results change if the power plant fleet is adjusted to the intro-
duction of electric mobility. While there are many thinkable
changes to the generation portfolio,11 we are particularly interested
in cases in which the introduction of electric vehicles goes along
with a corresponding increase in renewable energy generation. In
fact, German policy makers have directly linked the introduction of
electric vehicles to the utilization of renewable power [3]. Yet results
presented so far have shown that the additional energy used to
charge EVs is mainly provided by conventional power plants, and
11 For example, additional open cycle gas turbines may be beneficial under
user-driven charging, while additional base-load plants may constitute a least-cost
option under cost-driven charging. Note that we do not determine cost-minimal
generation capacity expansion endogenously, as we use a dispatch model in which
generation capacities enter as exogenous parameters.
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Table 5
Additional generation capacities in RE+ scenarios (in MW).

Charging mode 100% Wind 100% PV 50% Wind/PV

Wind PV

User-driven 6176 13,235 3088 6617
Cost-driven 6438 13,795 3219 6897
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particularly by emission-intensive lignite plants in the cost-driven
charging mode.

In the 2030 RE+ model runs, we add onshore wind and/or pho-
tovoltaics capacities to such an extent that their potential yearly
feed-in exactly matches the amount of energy required to charge
EVs. We distinguish three cases in which this power is generated
either with 100% onshore wind, 100% PV, or fifty-fifty (Table 5).12

The required PV capacities are much larger compared to onshore
wind because of PV’s lower average availability. In the cost-driven
charging mode, capacities are slightly higher than in the
user-driven mode, as the overall power consumption of PHEV and
REEV is higher.

The outcomes of the RE+ cases may be compared to the 2030
scenario without EVs and without additional renewables. This
may be interpreted as if the deployment of EVs was strictly linked
to an additional deployment of renewables, which would not have
occurred without the introduction of electric mobility. Under
user-driven charging, lignite plants are used less, while gas-fired
plants and pumped hydro stations are increasingly utilized. This
can be explained by increasing flexibility requirements in the
power system induced by both additional (inflexible) EVs and fluc-
tuating renewables. In contrast, power generation from lignite
increases under cost-driven charging, whereas gas-fired plants
and pumped hydro facilities are used less. This is because
system-optimized EV charging brings enough flexibility to the
power system to replace pumped hydro and gas-fired plants and
at the same time increase generation from rather inflexible lignite
plants.

Finally, we provide further details on the integration of fluctu-
ating renewables. It has often been argued that future electric vehi-
cle fleets may help to foster the system integration of fluctuating
renewables (compare [2]). Our model results show that the poten-
tial of EVs to reduce renewable curtailment is rather low under
user-driven charging, but sizeable in case of cost-driven charging
(Fig. 6).13 In 2020, very little curtailment takes place, and the effect
of EVs on curtailment is accordingly negligible. In the 2030 EM+ sce-
nario, about 1.3 TW h of renewable energy cannot be used in the
case without EVs, corresponding to 0.65% of the yearly power gener-
ation potential of onshore wind, offshore wind and PV. User-driven
EV charging decreases this value to about 1.1 TW h (0.55%), while
only 0.6 TW h of renewables have to be curtailed under
cost-driven charging (0.29%). Accordingly, optimized EV charging
allows slightly increasing the overall utilization of renewables.
Curtailment is generally higher in the RE+ scenarios. Among the
three different portfolios of additional renewable generators, the
one with 100% PV has the lowest curtailment levels (1.9 TW h or
0.89% in the case without electric vehicles), while curtailment is
highest in the one with 100% onshore wind (2.3 TW h or 1.07%).
Cost-driven charging results in much lower levels of renewable cur-
tailment compared to user-driven charging.
12 Additional deployment of renewables involves additional capital and fixed costs.
These are not considered here. Onshore wind and PV as well incur different capital
costs. Yet we do not aim to determine a cost-minimizing portfolio; rather, we are
interested in the effects of different technology choices on dispatch outcomes.

13 In addition, electric vehicles may indirectly foster the system integration of
renewable power generators by providing reserves and other ancillary services
energies, which are increasingly required in case of growing shares of fluctuating
renewables.
4.3. CO2 emissions

We have shown that EVs may increase the utilization of
base-load capacities as well as fluctuating renewables.14 While
the first tends to increase CO2 emissions, the latter has an opposite
effect. Both effects overlap. The net effect on emissions is shown in
Fig. 7, which features specific emissions of both overall power con-
sumption and EV charging electricity. The latter are calculated as
the difference of overall power plants’ CO2 emissions between the
respective case and the scenario without electric vehicles, related
to the overall power consumption of EVs.15

Due to ongoing deployment of renewable generators, specific
CO2 emissions of the overall power consumption decrease from
around 490 g/kW h in 201016 to around 400 g/kW h in 2020, to less
than 330 g/kW h in the 2030 BAU and EM+ scenarios, and to around
320 g/kW h in the 2030 RE+ scenarios. In the BAU and EM+ scenarios
of both 2020 and 2030, specific emissions of the EV charging elec-
tricity are substantially larger than average specific emissions, as it
is largely generated from emission-intensive technologies like lignite
and hard-coal. The improvements in renewable integration related
to EVs are by far outweighed by the increases in power generation
from conventional plants. Only in the 2030 RE+ scenarios, in which
the introduction of electric vehicles goes along with additional
renewable generation capacities, specific emissions of the charging
electricity are well below the system-wide average. Note that we
compare the RE+ scenarios to the same reference scenario as the
2030 EM+ runs, i.e., a 2030 scenario without EVs and without addi-
tional renewable generation capacities. The system-wide emission
effect of additional renewables is thus fully attributed to electric
vehicles, even if EVs are not fully charged with renewable power
during the actual hours of charging.

Among the two different charging strategies, the cost-driven
mode always leads to higher emissions compared to the
user-driven mode, as the first allows for switching some charging
activities into hours in which lignite plants are under-utilized,
whereas the latter forces charging to happen mostly in hours in
which lignite and hard-coal plants are already fully utilized.
Interestingly, this outcome contrast the findings of Göransson
et al. [12], which show for a Danish case study that user-driven
charging increases system-wide CO2 emissions, whereas
14 It should be noted that the dispatch model not only considers CO2 emissions
related to the actual generation of power, but also to the start-up of thermal power
plants.

15 The analysis accordingly focuses on direct CO2 emissions from the operation of
power plants, and is not based on a full life-cycle assessment of electric vehicles.

16 According to model results. The officially reported CO2 intensity for 2010 is
slightly higher. Yet in this context, only the relation between different scenarios is
relevant and not so much absolute emission levels.
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cost-driven charging decreases emissions. These differences can be
explained by different power plant fleets in the two case studies:
The Danish system has low capacities of emission-intensive genera-
tors and very high shares of wind, with accordingly high levels of
curtailment. In contrast, our German application features much
higher capacities of emission-intensive generators as well as lower
shares of wind power. Accordingly, the increase in power system
flexibility related to cost-driven EV charging is predominantly used
for reducing renewable curtailment in the Danish case and for
increasing the utilization of lignite and hard-coal plants in Germany.
5. Discussion of limitations

We briefly discuss some of the model limitations and their
likely impacts on results. First, the future development of exoge-
nous model parameters is generally uncertain. This refers, in par-
ticular, to the future power plant fleet. We have thus decided to
largely draw on the assumptions of a well-established scenario
[25]. In this way, meaningful comparisons to other studies which
lean on the same scenario are possible. On the downside, the
power plant fleet is necessarily not optimized for the integration
of electric vehicles. This shortcoming, however, should not have a
large impact on results, as overall power consumption of electric
vehicles is very small compared to power demand at large.

In Appendix A.3, we provide the dispatch outcomes for addi-
tional sensitivity analyses that include alternative assumptions
on the power plant fleet, higher CO2 prices, and cross-border
exchange. We find that general dispatch results hardly change in
most sensitivity runs, except for the case in which CO2 prices are
assumed to double, as this reverses the merit order of gas- and
coal-fired plants.

While using projections of future power generation from fluctu-
ating renewables, drawing on historic feed-in data of other years
than 2010 may lead to slightly different dispatch results. What is
more, calculating availability factors from feed-in time series
neglects potential smoothing effects related to future changes in
generator design or changes in the geographical distribution. This
may result in exaggerated assessments of both fluctuation and sur-
plus generation, as discussed by Schill [31].

Next, our dispatch model assumes perfectly uncongested trans-
mission and distribution networks. This assumption appears to be
reasonable with respect to the transmission grid, as the NEP fore-
sees perfect network expansion. Yet on the distribution level, a
massive deployment of electric vehicles may lead to local conges-
tion. Such effects can hardly be considered in a power system
model. It is reasonable to assume that congestion in distribution
grids may put additional constraints on the charging patterns of
electric vehicles. While this effect should in general be relevant
for both the user-driven and the cost-driven charging mode, distri-
bution grid bottlenecks may be particularly significant for the
user-driven mode, as charging is carried out largely in peak-load
periods in which the distribution grid is already heavily used.

In addition, we abstract from interactions with neighboring
countries. In the context of existing interconnection and plans for
further European market integration, this assumption appears to
be rather strong. Yet considering power exchange with neighbor-
ing countries would require a much larger model with detailed
representations of these countries’ power plant fleets, and accord-
ing parameters on future power system and EV developments in
these countries. Solving a large European unit commitment model
for a full year and various scenarios would be very challenging. By
treating the German power system as an island, we may generally
overestimate the flexibility impacts of electric vehicles such as
additional integration of lignite and renewables, as well as peak
capacity problems in the user-driven mode, as exchange with
neighboring countries would entail additional flexibility which
may mitigate both peak and off-peak load situations. Our results
may thus be interpreted as an upper boundary for the flexibility
impacts of EVs on the German power system. In fact, the effects
of EVs on lignite-fired power generation are mildly mitigated com-
pared to the EM+ runs in a sensitivity analysis in which we fix the
hourly pattern of net power exchange with neighboring countries
to 2010 levels.

Next, we only consider G2V power flows and abstract from V2G
flows. This assumption may be justified for the wholesale market,
as wholesale price differences likely do not suffice to make V2G
economically viable with respect to battery degradation costs
[7,18]. The provision of reserves and other ancillary services by
V2G, however, appears to be more promising [22,23,24]. We also
abstract from the provision of reserves, which may result in under-
estimated levels of conventional generation, and accordingly
underestimated renewable curtailment.

Finally, it should be noted that cost-driven charging generally
reduces the utility of vehicle owners compared to the
user-driven mode. Under cost-driven charging, users would have
to make regular forecasts about when they use their cars again,
and how long the next trips will be. In the real-world, this may
pose a considerable barrier to the adoption of a purely
cost-driven charging mode. On the other hand, charging costs are
lower in the cost-driven mode, as the EV owner – or the retailer,
or some other service provider, respectively – can make use of
lower wholesale prices. Further savings should be possible if not
only the wholesale market, but also reserve markets and other
ancillary services could be accessed, probably in combination with
V2G applications. Yet the feasibility of such strategies as well as
the quantification of utility losses and cost savings remain ques-
tions for future research. In any case, a partly cost-driven charging
mode as modeled here (for example, with fastchargegoal of 50%),
may provide a feasible middle ground between users’ preferences
and power system requirements.

6. Conclusions

We analyze the integration of future fleets of electric vehicles
into the German power system for various scenarios of 2020 and
2030. We use a numerical dispatch model with a unit commitment
formulation which minimizes overall dispatch costs over a full year
to study the effects of different charging modes on the load curve,
dispatch, costs, and emission. By applying a novel model formula-
tion, we are able not only to simulate extreme charging modes, but
also more realistic intermediate ones.

Based on our findings we suggest several policy-relevant con-
clusions. First, the overall energy requirements of electric vehicles
should not be of concern to policy makers for the time being,



Table 6
Sets, parameters, and variables related to electric vehicles.

Sets Description Unit

ev 2 EV Set of 28 EV profiles

Parameters
batcapev EV Battery Capacity kW h
chargemaxev;t Hourly power rating of the charge connection (0

when car is in use or parked without grid
connection)

kW

consev;t Hourly EV power consumption kW h
gev EV charging efficiency %
fastchargegoal Restricts the relative battery charge level that

should be reached as fast as possible (1 for fully
user-driven charging, 0 for cost-driven)

penaltyPhevfuel Penalty for non-electric PHEV operation mode €/MW h

phevev Defines whether an EV is a PHEV/REEV (1 if yes, 0
otherwise)

nev Number of EVs per load profile

Binary variables
FULLCHARGEev ;t 1 if full charging power is required, i.e., when the

charge level is below, fastchargegoal and 0
otherwise

Continuous variables
Chargeev;t Cumulative EV charging power MW
Chargelevev ;t Cumulative EV battery charge level MW h
Phevfuelev;t Cumulative PHEV conventional fuel use MW h
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whereas their impact on peak loads should be. Not only with
respect to costs, but also to system security, cost-driven charging
is clearly preferably to the user-driven mode. Because of genera-
tion adequacy concerns, user-driven charging may have to be
restricted, at the latest if the vehicle fleet gets as large as in our
2030 scenarios, unless high charging tariffs render user-driven
charging unattractive, anyway.

Second, policy makers should be aware that cost-optimized
charging not only increases the utilization of renewable energy,
but also of low-cost emission-intensive plants. If the introduction
of electric mobility is linked to the use of renewable energy, as
repeatedly stated by the German government, it has to be made sure
that a corresponding amount of renewables is added to the system.
With respect to CO2 emissions, an additional expansion of renew-
ables is particularly important as long as substantial – and increas-
ingly under-utilized – capacities of emission -intensive generation
technologies are still present in the system. From a system perspec-
tive it does not matter if these additional renewables are actually
fully utilized by EVs exactly during the respective hours of charging;
rather, the net balance of the combined introduction of electric
mobility and renewables compared to a baseline without EVs and
without additional renewables is relevant.

Third, cost-driven charging, which resembles market-driven or
profit-optimizing charging in a perfectly competitive market, can
only lead to emission-optimal outcomes if emission externalities
are correctly priced – as, for example, in a sensitivity analysis that
assumes double CO2 prices. Otherwise, cost-driven charging may
lead to above-average specific emissions, and even to higher emis-
sions compared to the user-driven mode. Accordingly, policy mak-
ers should make sure that CO2 emissions are adequately priced.
Otherwise, some kind of emission-oriented charging strategy
would have to be applied, which is possible in theory (cf. [15]),
but very unlikely to be implemented in practice.

Fourth, controlled charging of future electric vehicle fleets
interacts with other potential sources of flexibility in the system.
Our analysis indicates that the utilization of pumped hydro storage
substantially decreases in the cost-driven mode compared to
user-driven charging. The same may hold for other storage tech-
nologies and load shifting. Accordingly, the viability of such flexi-
bility options depends on the size of the future EV fleet, as well
as on the charging mode.

Finally, we conclude that even a slight relaxation of fully
user-driven charging leads to much smoother charging profiles.
That is, undesirable EV impacts on the system peak load could be
substantially reduced if vehicle owners would agree to have not
the full battery capacity charged as quickly as possible after con-
necting to the grid, but only a (possibly large) fraction of it. We
show that a large part of the system benefits generated by fully
cost-driven charging could already be realized with a fast charging
requirement of around 50% or even 75%. This suggests that EV user
preferences – such as not giving control over charging away com-
pletely, or being able to make previously unplanned trips – and
power system requirements could be reconciled by a charging
strategy which makes sure that not the full battery capacity is
charged as soon as possible.
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Appendix A

A.1. The model

Table 6 lists all sets, parameters, and variables related to electric
vehicles. The complementary Table 7 includes all other sets, param-
eters, and variables of the basic dispatch model. EV-related equa-
tions have already been described in Section 2. In the following,
we provide the analytical formulation of the remainder of the model.

Cost ¼
X

i;t

ðvciQ i;t þ sciSTi;tÞ þ
X

j;t

vstcjStoutj;t

þ
X

t

penaltyPeakPeakt þ
X

ev;t
penaltyPhevfuelPhevfuelev;t ð1Þ

Qi;t 6 qmaxiavaili;tUi;t 8i; t ð2Þ
Qi;t P qminiavaili;tUi;t 8i; t ð3Þ
STi;t P Ui;t � Ui;t�1 8i; t ð4Þ
Ui;t�1 � Ui;t 6 1� Ui;tt 8i; t with t 6 tt 6 t þ s timei � 1 ð5Þ
Resintres;t þ Rescurtres;t ¼ resavailres;t 8res; t ð6Þ
Rescurtres;t 6 resavailres;t 8res; t ð7Þ
Biot 6 qmaxbio � availbiot 8t ð8Þ
X

t

Biot 6 energymaxbio ð9Þ

Stlev j;t ¼ Stlev j;t�1 þ Stinj;tgj � Stoutj;t 8j; t ð10Þ
Stlev j;t 6 stlevmaxj 8j; t ð11Þ
Stinj;t 6 stinmaxj 8j; t ð12Þ
Stoutj;t 6 stoutmaxj 8j; t ð13Þ
X

i

Q i;t þ
X

res

Resintres;t þ Biot þ Peakt þ othergent

þ
X

j

ðStoutj;t � Stinj;tÞ ¼ demt þ
X

ev
Chargeev ;t 8t ð14Þ



Table 7
Sets, parameters, and variables of the basic model.

Sets Description Unit

i 2 I Set of thermal power plant blocks of various
technologies

j 2 J Set of thermal storage technologies
res 2 RES Set of fluctuating renewable technologies
t; tt 2 T Time set h

Parameters
availi;t Availability of thermal blocks %
availbiot Availability of biomass generation %
demt Hourly power demand (without EV consumption) MW h
energymaxbio Yearly biomass power generation budget MW h
othergent Exogenous other hourly power generation (hydro,

waste)
MW h

penaltyPeak Penalty for use of backstop peak technology €/MW h

qmaxi Hourly Generation capacity of thermal blocks MW h
qmaxbio Hourly biomass generation capacity MW h
qmini Minimum hourly generation of thermal blocks MW h
resavailres;t Hourly availability of fluctuating renewables MW h
sci Start-up costs of thermal blocks €

stinmaxj Hourly storage loading capacity MW h
stimei Start-up time of thermal blocks h
stlevmaxj Maximum storage level MW h
stoutmaxj Hourly storage discharging capacity MW h
vci Variable generation costs of thermal blocks €/MW h
vstcj Variable generation costs of storage technologies €/MW h

Binary variables
STi;t Start-up variable of thermal blocks (1 if block is

started up in period t, 0 otherwise)
Ui;t Status variable of thermal blocks (1 if block is

generating, 0 otherwise)

Continuous variables
Biot Generation from biomass MW h
Cost Total dispatch costs €

Rescurtres;t Hourly curtailment of fluctuating renewables MW h
Resintres;t Hourly system integration of fluctuating

renewables
MW h

Peakt Hourly generation of backstop peak technology MW h
Qi;t Quantity of power generated by thermal block i in

hour t
MW h

Stinj;t Hourly power fed into storage MW h
Stlev j;t Hourly storage level MW h
Stoutj;t Hourly power generation from storage MW h

17 In contrast to the RE+ scenario, we do not link the renewable expansion to the
introduction of electric vehicles, i.e., the additional renewable capacities are also
foreseen in the respective reference scenario without electric vehicles.

18 We chose the year 2010 because it is consistent with the load data and the
renewable feed-in patterns. According to data provided by 50Hertz, Amprion, TenneT
TSO, and TransnetBW, net exports amounted to around 5 TW h in 2010, with hourly
maximum net exports of 6 TW h and maximum net imports of 7 TW h.
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The objective function (1) sums up variable generation costs of
thermal plants, including start-up costs of single blocks, variable
storage costs as well as penalties for using the backstop peak load
technology and for non-electric operation of PHEV/REEV. Eqs. (2)
and (3) establish maximum and minimum generation levels for
thermal blocks. Note that the binary status variable Ui;t is 1 if the
plant is online and 0 otherwise. Eq. (4) ensures consistency
between the binary status and start-up variables of thermal gener-
ators. Eq. (5) enforces a start-up time restriction. Eqs. (6) and (7)
determine hourly system integration as well as curtailment of fluc-
tuating renewables such as onshore and offshore wind power and
solar PV. Eq. (8) is an hourly power generation capacity restriction
for biomass, whereas (9) constrains overall biomass utilization, for
example, because of resource constraints. Eq. (10) connects storage
levels of subsequent periods, given inflows and outflows. Here,
roundtrip efficiency losses are attributed to storage loading. Eqs.
(11)–(13) establish upper limits on the storage level, the loading
capacity as well as the discharging capacity. Finally, the market
clearing condition (14) ensures that overall supply equals demand
in all hours.

Thermal power plants are modeled as single blocks in a unit
commitment formulation with respective start-up costs and
start-up times; in contrast, other generation technologies such as
storage, biomass and variable renewables are modeled in a linear
way as aggregated capacities which are assumed to be perfectly
flexible. Only in the 2010 scenario, we assume generation from
biomass to be completely inflexible, i.e., fixed to average levels.
In addition, we include inflexible power generation from run-of
river hydro and waste incineration as an exogenous parameter
othergent , drawing on historic data.
A.2. Dispatch outcomes without EVs

Fig. 8 shows power plant dispatch of the scenarios without elec-
tric vehicles for 2020, the 2030 baseline, and the 2030 RE+ sensitiv-
ities. Between 2020 and 2030, generation from wind and PV as well
as CCGT plants increases, as the respective capacities grow (cf.
Fig. 1). On the contrary, generation from lignite and hard coal goes
down and nuclear power is phased out completely.
A.3. Sensitivity analyses

Results of dispatch models generally depend on the input
parameters used. This concerns, for example, assumptions on the
power plant fleet, future CO2 prices, and power exchange with
neighboring countries. In fact, the uncertainties concerning the
future development of the German power plant portfolio may be
larger than the size of the EV fleet assumed here. We thus carry
out additional sensitivity analyses for the year 2030 to study the
effect of such parameter variations.

Two sensitivities deal with changes of the power plant fleet:
‘‘No lignite’’ assumes that all lignite plants are shut down by
2030 and fully substituted by CCGT plants with block sizes of
500 MW each. This sensitivity is of interest against the background
of the ongoing debate on the compatibility of lignite-fired power
generation with German CO2 emission targets. In a sensitivity
‘‘20% more RES’’, we assume the capacities of onshore and offshore
wind power as well as PV to be 20% larger compared to EM+. This
assumption reflects the fact that renewable expansion was much
faster in the last decade compared to what was planned by the
government.17 In another sensitivity called ‘‘Double CO2 price’’ we
assume that CO2 prices double compared to what is assumed in
EM+ for 2030, i.e., reach 82 Euro per ton. A fourth sensitivity deals
with the simplifying assumption of treating the German power sys-
tem as an island: In ‘‘Exchange’’, we fix the hourly net power
exchange with neighboring countries to 2010 levels. The respective
time series is derived from data published by the four German trans-
mission system operators.18

For each of these sensitivities, we carry out three model runs: a
reference case without electric vehicles, a fully user-driven case,
and a fully cost-driven one. We then compare dispatch outcomes
of the EV scenarios to the respective runs without EVs. Results pre-
sented in Fig. 9 shows that major changes of general dispatch out-
comes occur only under the assumption of double CO2 prices.

In ‘‘No lignite’’, additional generation from hard coal and CCGT
plants substitutes for the phased-out lignite plants. The relative
share of CCGT under the cost-driven charging mode is higher than
in EM+, as the hard coal plants are often producing at full capacity
even in the case without EVs. Accordingly, specific CO2 emissions
of EVs also decrease compared to EM+. Yet the general finding that
cost-driven charging involves more power generation from
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emission-intensive coal plants and less from CCGT compared to
user-driven charging also holds in this sensitivity.

A major change occurs in the sensitivity ‘‘Double CO2 price’’.
Under this assumption, the merit order changes such that CCGT
plants provide the cheapest option to charge EVs. Accordingly,
CCGT is now the predominant source of charging electricity in
the cost-driven mode, while lignite and hard coal achieve only
minor shares. In contrast, user-driven charging now involves larger
amounts of electricity from lignite and hard coal plants, as cheaper
CCGT plants are already producing at full capacity in many hours of
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Fig. 9. Sensitivity analyses: dispatch changes re
vehicle charging. This sensitivity also indicates that cost-driven
charging goes along with less carbon-intensive power generation
if CO2 is priced sufficiently.

In the ‘‘20% more RES’’ sensitivity, results generally do not
change much compared to EM+. EVs lead to some additional inte-
gration of wind power and PV; yet most of the charging electricity
still comes from lignite and hard coal plants in the cost-driven
mode, and from hard coal and CCGT plants in the user-driven
mode, respectively. The reason is that most of the additional
renewable power is already used in the reference scenario without
electric vehicles.

Finally, ‘‘Exchange’’ only leads to minor changes compared to
EM+. Assuming hourly net power exchange with neighboring coun-
tries as in 2010 leads to slightly higher full-load hours of lignite
and hard coal plants compared to EM+ already in the case without
electric vehicles. The effect of EV charging on lignite is thus mildly
mitigated: in the cost-driven mode, charging power from lignite
now amounts to 2.6 TW h, compared to 2.9 TW h in EM+. Yet the
overall change remains small because of the rather low historic
exchange levels. The effect should become stronger if further
renewable expansion in Germany, combined with increased inter-
connector capacity, leads to higher cross-border power exchange.
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