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Abstract: We analyze the impacts of future scenarios of electric vehicles (EVs) on the German power 

system, drawing on different assumptions on the charging mode. We find that the impact on the load 

duration curve strongly differs between charging modes. In a fully user-driven mode, charging largely 

occurs during daytime and in the evening, when power demand is already high. User-driven charging 

may thus have to be restricted because of generation adequacy concerns. In contrast, cost-driven 

charging is carried out during night-time and at times of high PV availability. Using a novel model 

formulation that allows for simulating intermediate charging modes, we show that even a slight re-

laxation of fully user-driven charging results in much smoother load profiles. Further, cost-driven EV 

charging strongly increases the utilization of hard coal and lignite plants in 2030, whereas additional 

power in the user-driven mode is predominantly generated from natural gas and hard coal. Specific 

CO2 emissions of EVs are substantially higher than those of the overall power system, and highest 

under cost-driven charging. Only in additional model runs, in which we link the introduction of EVs to 

a respective deployment of additional renewables, electric vehicles become largely CO2-neutral. 
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1 Introduction 

The use of electric vehicles (EVs) is set to increase substantially in many countries around the world 

(OECD/IEA 2013). EV may bring about numerous benefits, such as lower emissions of various air pol-

lutants and noise, increasing energy efficiency compared to internal combustion engines, and the 

substitution of oil as the main primary energy source for road transport. A massive uptake of electric 

vehicles may also have a strong impact on the power system. The effects on power plant dispatch, 

system peak load, and carbon emissions depend on both the power plant fleet and the charging 

mode of electric vehicles (cf. Hota et al. 2014). 

In this paper, we study possible impacts of future electric vehicle fleets on the German power sys-

tem. The German case provides an interesting example as the government has announced ambitious 

targets of becoming both the leading manufacturer and the lead market for electric vehicles in the 

world (Bundesregierung 2011). Moreover, the German power system undergoes a massive transfor-

mation from coal and nuclear towards renewable sources, also referred to as Energiewende. We 

carry out model-based analyses for different scenarios of the years 2020 and 2030, building on de-

tailed vehicle utilization patterns and a comprehensive power plant dispatch model with a unit com-

mitment formulation. We are particularly interested in the impacts of electric vehicles on the sys-

tem’s load duration curve, the dispatch of power plants, the integration of fluctuating renewables, 

and CO2 emissions under different assumptions on the mode of vehicle charging. 

Previous research has analyzed various interactions of electric mobility and the power system, cover-

ing purely battery-electric vehicles (BEV), plug-in hybrid electric vehicles (PHEV), and/or range ex-

tender electric vehicles (REEV). Kempton and Tomić (2005a) first introduce the vehicle-to-grid (V2G) 

concept and estimate V2G-related revenues in various segments of the U.S. power market. In the 

wake of this seminal article, a broad strand of related research has evolved. Hota et al. (2014) review 

numerous model analyses on the power system impacts of electric vehicles and group these into 

different categories, e.g., with respect to the assumed type of grid connection and the applied meth-

odology. 

One strand of the literature deals with power system implications of different charging strategies. 

Wang et al. (2011) examine interactions between PHEVs and wind power in the Illinois power system 

with a unit commitment approach. They show that smart coordinated charging leads to a reduction 

in total system cost and smoother conventional power generation profiles. Kiviluoma and Meibohm 

(2011) model the power costs that Finnish owners of electric vehicles would face by 2035. In case of 

optimized charging, power prices turn out to be rather low as cheap generation capacities can be 

used. Loisel et al. (2014) analyze the power system impacts of different charging and discharging 

strategies of battery-electric vehicles for Germany by 2030. Distinguishing between grid-to-vehicle 

(G2V) and vehicle-to-grid (V2G), they also highlight the benefits of optimized charging, yet conclude 

that V2G is not a viable option due to excessive battery degradation costs. Kristoffersen et al. (2011) 

as well as Juul and Meibohm (2011 and 2012) also find that EVs provide flexibility mostly by opti-

mized charging activities and not so much by discharging power back to the grid. 

Another strand of the literature focuses on the interactions of electric vehicles with fluctuating re-

newables and emission impacts. Lund and Kempton (2008) analyze the integration of variable re-

newable sources into both the power system and the transport sector. They find that EVs with high 
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charging power can substantially reduce renewable curtailment and CO2 emissions. Göransson et al. 

(2010) carry out a comparable case study for Denmark, also concluding that system-optimized PHEV 

charging can decrease net CO2 emissions. In a more stylized simulation for Denmark, Ekman (2011) 

highlights the potential of EVs to take up excess wind power. Guille and Gross (2010) focus their 

analysis on PHEV-related potentials for smoothing variable wind generation. Sioshansi and Miller 

(2011) apply a unit commitment model to analyze the emission impacts of PHEVs with regard to CO2, 

SO2, and NOx in the Texas power system. Imposing an emission constraint on PHEV charging activi-

ties, they show that specific emissions may be reduced below the ones of respective conventional 

cars without increasing recharging costs substantially. For the case of Ireland, Foley et al. (2013) 

show that off-peak charging is the most favorable option with respect to cost and CO2 emissions. 

Using an agent-based model, Dallinger et al. (2013) find that smart EV charging can facilitate the in-

tegration of intermittent renewables both in California and Germany by 2030. Schill (2011) analyzes 

the impacts of PHEV fleets in an imperfectly competitive power market with a Cournot model and 

finds that both welfare and emission impacts depend on the agents being responsible for charging 

the vehicles, and on the availability of V2G. Doucette (2011) notes that the CO2 mitigation potential 

of EVs is highly dependent on the existing power plant portfolio and concludes that additional decar-

bonization efforts might be needed to obtain CO2 emission reductions. 

We aim to contribute to the cited literature in several ways. First, the unit commitment approach 

used here is particularly suitable for studying the interactions of EVs with fluctuating renewables. It 

considers the limited flexibility of thermal power generators and is thus more suitable to capture the 

potential flexibility benefits of EVs compared to linear dispatch models (e.g., Lund and Kempton 

2008, Göransson et al. 2010, Ekman 2011, Schill 2011, Loisel et al. 2014). Next, the hourly patterns of 

electric vehicle power demand and charging availabilities used here are considerably more sophisti-

cated than in some of the aforementioned studies (e.g., Ekman 2011, Foley et al. 2013). In contrast 

to, for example, Loisel et al. (2014), we moreover consider not only BEV, but also PHEV/REEV. What 

is more, we do not rely on a stylized selection of hours in particular seasons or load situations (e.g., 

Wang et al. 2011), but apply the model to all subsequent hours of a full year. We further present a 

topical case study of the German Energiewende for the years 2020 and 2030 with up-to-date input 

parameters as well as a stronger deployment of renewables than assumed in earlier studies, and with 

a full consideration of the German nuclear phase-out. Next, we do not only distinguish between the 

two stylized extreme cases of fully cost-optimized and completely non-coordinated charging, but also 

include additional analyses with intermediate modes of charging, which appear to be more realistic. 

This is made possible by drawing on a novel formulation of EV charging restrictions. Finally, we study 

the effects of electric vehicles not only for a baseline power plant fleet, but also for cases with ad-

justed renewable generation capacities. This allows assessing the potential benefits of linking the 

introduction of electric mobility to a corresponding expansion of renewable power generation. 

The remainder is structured as follows. Section 2 introduces the methodology. Section 3 describes 

the scenarios and input parameters. Model results are presented in section 4. The impacts of model 

limitations on results are critically discussed in section 5. The final section concludes. The Appendix 

presents a description of the optimization model, dispatch outcomes without EVs, and the results of 

additional sensitivity analyses. 
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2 Methodology 

We use a numerical optimization model that simultaneously optimizes power plant dispatch and 

charging of electric vehicles. The model determines the cost-minimal dispatch of power plants, taking 

into account the thermal power plant portfolio, fluctuating renewables, pumped hydro storage, as 

well as grid-connected electric vehicles. The model has an hourly resolution and is solved for a full 

year. It includes several inter-temporal constraints on thermal power plants, such as minimum load 

restrictions, minimum down-time, and start-up costs. The model is formulated as a mixed integer 

linear program (MILP) with binary variables on the status of thermal plants. In addition, there are 

special generation constraints for thermal plants that are operated in a combined heat and power 

mode, depending on temperature and time of day. 

The model draws on a range of exogenous input parameters, including thermal and renewable gen-

eration capacities, fluctuating availability factors of wind and solar power, generation costs and other 

techno-economic parameters, and the demand for electricity both in the power sector and related to 

electric vehicle charging. As for the latter, we draw on future patterns of hourly power consumption 

and charging availabilities derived by Kasten and Hacker (2014). Hourly demand is assumed not to be 

price-elastic. Endogenous model variables include the dispatch of all generators, electric vehicle 

charging patterns, dispatch costs, and CO2 emissions.1 

We use a standard unit commitment model approach. The basic formulation is provided in Appendix 

A.1. In the following, we highlight the equations that deal with electric vehicles. EV-related sets, pa-

rameters and variables are listed in Table 6 in the Appendix. Exogenous parameters are in lower case 

letters, endogenous continuous variables have an initial upper case letter, and binary variables are 

completely set in upper case letters. 

The set 𝑒𝑣 represents the different EV profiles in the model. Equation (EV1) is the cumulative EV 

energy balance. The battery charge level 𝐶ℎ𝑎𝑟𝑔𝑒𝑙𝑒𝑣𝑒𝑣,𝑡 is determined as the level of the previous 

period plus the balance of charging and (price-inelastic) consumption in the actual period. The charge 

level of PHEV/REEV is also influenced by conventional fuel use 𝑃ℎ𝑒𝑣𝑓𝑢𝑒𝑙𝑒𝑣,𝑡. Importantly, only elec-

tric vehicles of the PHEV/REEV type may use conventional fuels, so 𝑃ℎ𝑒𝑣𝑓𝑢𝑒𝑙𝑒𝑣,𝑡 is set to zero for 

purely battery-electric vehicles (EV2). In order to ensure a preference for using electricity in 

PHEV/REEV, we penalize the use of conventional fuels with 𝑝𝑒𝑛𝑎𝑙𝑡𝑦𝑃ℎ𝑒𝑣𝑓𝑢𝑒𝑙 in the objective function 

(equation 1 in Appendix A.1). Equations (EV3) and (EV4) constitute upper bounds on the cumulative 

power of vehicle charging and the cumulative charge level of vehicle batteries. Note that the param-

eter 𝑐ℎ𝑎𝑟𝑔𝑒𝑚𝑎𝑥𝑒𝑣,𝑡 assumes positive values only in periods in which the EV is connected to the grid. 

Non-negativity of the variables representing charging, charge level, and conventional fuel use is en-

sured by equations (EV5-EV7). In addition, the model’s energy balance (equation 14 in Appendix A.1) 

considers the additional electricity that is required for charging electric vehicles ∑ 𝐶ℎ𝑎𝑟𝑔𝑒𝑒𝑣,𝑡𝑒𝑣  in 

each hour. 

                                                           
1 We only consider G2V and abstract from V2G applications, as previous analyses have shown that the potential 
V2G revenues are unlikely to cover related battery degradation costs (cf. Loisel et al. 2014). Kempton and 
Tomić (2005b), Andersson et al. (2010), Lopes et al. (2011), and Sioshansi and Denholm (2010) argue that V2G 
may be viable for providing spinning reserves and other ancillary services. 
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𝐶ℎ𝑎𝑟𝑔𝑒𝑙𝑒𝑣𝑒𝑣,𝑡 = 𝐶ℎ𝑎𝑟𝑔𝑒𝑙𝑒𝑣𝑒𝑣,𝑡−1 + 𝐶ℎ𝑎𝑟𝑔𝑒𝑒𝑣,𝑡𝜂𝑒𝑣 − 𝑐𝑜𝑛𝑠𝑒𝑣,𝑡𝑛𝑒𝑣 + 𝑃ℎ𝑒𝑣𝑓𝑢𝑒𝑙𝑒𝑣,𝑡 ∀𝑒𝑣, 𝑡 (EV1) 

𝑃ℎ𝑒𝑣𝑓𝑢𝑒𝑙𝑒𝑣,𝑡 = 0 𝑖𝑓 𝑝ℎ𝑒𝑣𝑒𝑣 = 0 ∀𝑒𝑣, 𝑡 (EV2) 

𝐶ℎ𝑎𝑟𝑔𝑒𝑒𝑣,𝑡  ≤ 𝑐ℎ𝑎𝑟𝑔𝑒𝑚𝑎𝑥𝑒𝑣,𝑡𝑛𝑒𝑣 ∀𝑒𝑣, 𝑡 (EV3) 

𝐶ℎ𝑎𝑟𝑔𝑒𝑙𝑒𝑣𝑒𝑣,𝑡 ≤ 𝑏𝑎𝑡𝑐𝑎𝑝𝑒𝑣𝑛𝑒𝑣 ∀𝑒𝑣, 𝑡 (EV4) 

𝐶ℎ𝑎𝑟𝑔𝑒𝑒𝑣,𝑡 ≥ 0 ∀𝑒𝑣, 𝑡 (EV5) 

𝐶ℎ𝑎𝑟𝑔𝑒𝑙𝑒𝑣𝑒𝑣,𝑡 ≥ 0 ∀𝑒𝑣, 𝑡 (EV6) 

𝑃ℎ𝑒𝑣𝑓𝑢𝑒𝑙𝑒𝑣,𝑡 ≥ 0 ∀𝑒𝑣, 𝑡 (EV7) 

 

Equations (EV8) and (EV9) are only relevant in the case of not fully cost-driven charging, i.e., if 

𝑓𝑎𝑠𝑡𝑐ℎ𝑎𝑟𝑔𝑒𝑔𝑜𝑎𝑙 is exogenously set to a positive value. Equation (EV8) makes sure that the vehicle 

will be charged as fast as possible after it is connected to the grid. This is operationalized by deter-

mining the difference between the desired and the current battery charge level. If the battery level is 

below the target, fast charging is enforced, i.e., the binary variable 𝐹𝑈𝐿𝐿𝐶𝐻𝐴𝑅𝐺𝐸𝑒𝑣,𝑡 assumes the 

value 1. Equation (EV9) then enforces charging to be carried out with full power. Note that this mod-

el formulation is very flexible. It allows not only representing the two extreme modes of charging, 

i.e., fully user-driven or fully cost-driven2 charging; by assigning any real number between 0 and 1 to 

𝑓𝑎𝑠𝑡𝑐ℎ𝑎𝑟𝑔𝑒𝑔𝑜𝑎𝑙, any desired target level of fast battery charging may be specified. For example, if 

𝑓𝑎𝑠𝑡𝑐ℎ𝑎𝑟𝑔𝑒𝑔𝑜𝑎𝑙 is set to 0.5, vehicle batteries have to be charged with full power until a charging 

level of 50% is reached. After that, the remaining battery capacity may be charged in a cost-optimal 

way. We focus on the two extreme charging modes in the model analyses, i.e., set 𝑓𝑎𝑠𝑡𝑐ℎ𝑎𝑟𝑔𝑒𝑔𝑜𝑎𝑙 

to 0 (fully cost-driven) or 1 (fully user-driven), respectively in most scenarios. In addition, we carry 

out additional analyses with values of 0.25, 0.5 and 0.75 (see section 3). 

 

𝑓𝑎𝑠𝑡𝑐ℎ𝑎𝑟𝑔𝑒𝑔𝑜𝑎𝑙 ∗ 𝑏𝑎𝑡𝑐𝑎𝑝𝑒𝑣𝑛𝑒𝑣 − 𝐶ℎ𝑎𝑟𝑔𝑒𝑙𝑒𝑣𝑒𝑣,𝑡

≤ (𝑏𝑎𝑡𝑐𝑎𝑝𝑒𝑣𝑛𝑒𝑣 + 1)𝐹𝑈𝐿𝐿𝐶𝐻𝐴𝑅𝐺𝐸𝑒𝑣,𝑡 
∀𝑒𝑣, 𝑡 (EV8) 

𝐹𝑈𝐿𝐿𝐶𝐻𝐴𝑅𝐺𝐸𝑒𝑣,𝑡𝑐ℎ𝑎𝑟𝑔𝑒𝑚𝑎𝑥𝑒𝑣,𝑡𝑛𝑒𝑣 ≤ 𝐶ℎ𝑎𝑟𝑔𝑒𝑒𝑣,𝑡 ∀𝑒𝑣, 𝑡 (EV9) 

 

3 Scenarios and input parameters  

We apply the dispatch model to various scenarios. First, we distinguish different developments with 

regard to electric vehicle deployment:3 a reference case without electric vehicles, a Business-as-usual 

(BAU) scenario and an “Electric mobility+” (EM+) scenario for the years 2020 and 2030. The BAU sce-

nario assumes an EV stock of 0.4 million in 2020 and 3.7 million in 2030. The EM+ scenario assumes a 

slightly increased deployment of electric vehicles with a stock of 0.5 million EV by 2020 and 4.8 mil-

                                                           
2 According to the objective function (1) presented in Appendix A.1, the model minimizes the costs of dispatch. 
This includes fuel and CO2 costs as well as start-up costs. Capital costs are not relevant for the optimization 
under the assumption of existing generation capacities. 
3 In doing so, we draw on the scenarios developed by Kasten and Hacker (2014) in the context of the European 
research project DEFINE. https://www.ihs.ac.at/projects/define/. 

https://www.ihs.ac.at/projects/define/
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lion by 2030. This is made possible by additional policy measures such as a feebate system, adjusted 

energy taxation and ambitious CO2 emission targets (for further details, see Kasten and Hacker 2014). 

These scenarios are solved for all hours of the respective year. In addition, we carry out six additional 

model runs for the EM+ scenario of the year 2030 with additional renewable capacities (RE+). These 

capacities are adjusted such that their yearly generation exactly matches the yearly power demand 

of EVs. We assume that the additional power either comes completely from onshore wind, or com-

pletely from PV, or fifty-fifty from onshore wind and PV. 

Within the scenarios BAU, EM+, and RE+, we further distinguish the two extreme charging modes 

described in section 2. EVs may either be charged in a completely user-driven mode or in a complete-

ly cost-driven mode. User-driven charging reflects a setting in which all electric vehicles are fully re-

charged with the maximum available power as soon as these are connected to the grid. This mode 

could also be interpreted as a “plug-in and forget” charging strategy by the vehicle owners. In con‐

trast, the cost-driven charging mode reflects a perfectly coordinated way of charging that minimizes 

power system costs. It could also be interpreted as system-optimized charging or market-driven 

charging under the assumption of a perfectly competitive power market. Such a charging strategy 

could be enabled by smart charging devices and may be carried out by power companies, specialized 

service providers, or vehicle owners themselves. In the real world, some intermediate modes of 

charging between these extremes may materialize. To approximate these, the 2030 EM+ scenarios 

are additionally solved with fast charging requirements of 25%, 50%, and 75%, respectively. Table 2 

gives an overview of all model runs. 

 

Table 1: Scenario matrix 

EV scenario Charging mode Generation capacities 2010 2020 2030 

No EVs 

Baseline x x x 

RE+ 

100% Wind   x 

50%  Wind/PV   x 

100%  PV   x 

100%  Wind   x 

50%  Wind/PV   x 

100%  PV   x 

BAU 
User-driven 

Baseline 
 x x 

Cost-driven  x x 

EM+ 

User-driven 

Baseline 

 x x 

75% fast charge   x 

50% fast charge   x 

25% fast charge   x 

Cost-driven  x x 

User-driven 

RE+ 

100%  Wind   x 

50%  Wind/PV   x 

100%  PV   x 

Cost-driven 

100%  Wind   x 

50%  Wind/PV   x 

100%  PV   x 
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As regards exogenous input parameters, we draw on several sources. First, we use DIW Berlin’s pow‐

er plant data-base, which includes a block-sharp representation of thermal generators in Germany. 

Blocks with a capacity smaller than 100 MW are summed up to 100 MW blocks in order to reduce 

numerical complexity. Assumptions on the future development of German power plant fleet are de-

rived from the so-called Grid Development Plan (NEP).4 This plan is drafted on a yearly basis by Ger-

man transmission system operators for a time horizon of 10 and 20 years. After a series of revisions 

and public consultations, the NEP serves as the basis for German federal network planning legisla-

tion. We largely draw on the 2013 version (50Hertz et al. 2013) regarding thermal and renewable 

generation capacities, fuel and carbon prices (Table 2), and specific carbon emissions.5 

 

Table 2: Fuel and carbon prices 

 Unit 2010 2020 2030 

Lignite EUR2010/MWhth 1.5 1.5 1.5 

Hard coal EUR2010/MWhth 10.4 9.9 10.5 

Natural gas EUR2010/MWhth 21.0 24.8 26.2 

Oil EUR2010/MWhth 38.3 46.7 57.0 

CO2 certificates EUR2010/t 13.0 23.8 40.8 

 

 

As the NEP 2013 only provides generation capacities for the years 2011, 2023, and 2033, we linearly 

interpolate between these years to derive capacities for 2020 and 2030. Nuclear power is phased-out 

according to German legislation. Pumped hydro storage capacity is assumed to stay constant. Over-

all, thermal generation capacities slightly decrease until 2030, whereas installed renewable capacities 

increase substantially (Figure 1). CCGT and OCGT refer to combined or open cycle gas turbines, re-

spectively. We also include an expensive, but unlimited backstop peak generation technology in or-

der to ensure solvability of the model even in cases of extreme vehicle charging patterns. 

                                                           
4 Netzentwicklungsplan (NEP) in German. 
5 More precisely, we draw on the medium projections called “B 2023” and “B 2033”, which are deemed to be 
the most likely scenarios. We also draw on the 2012 and 2014 versions of the NEP in some instances, e.g., re-
garding 2010 generation capacities as well as 2012 offshore wind capacities (50Hertz et al. 2012, 50Hertz et al. 
2014). 
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Figure 1: Installed net generation capacities 

 

Hourly availability factors of onshore wind and PV are derived from publicly available feed-in data of 

the year 2010 provided by German TSOs. We project hourly maximum generation levels of these 

technologies for the years 2020 and 2030 by linearly scaling up to the generation capacities of the 

respective year.6 Hourly power demand is assumed not to change compared to 2010 levels. We as-

sume a total yearly net consumption of around 561 TWh, including grid losses, with a maximum 

hourly peak load of 91.9 GW. As regards other techno-economic parameters such as efficiency of 

thermal generators, start-up costs, and minimum off-times, we largely draw on Egerer et al. (2014). 

All exogenous model parameters related to electric vehicles – except for the parameter 

𝑓𝑎𝑠𝑡𝑐ℎ𝑎𝑟𝑔𝑒𝑔𝑜𝑎𝑙 – are provided by Kasten and Hacker (2014). The input data includes aggregate 

hourly power consumption and maximum charging profiles of 28 vehicle categories, of which 16 re-

late to BEV and 12 to PHEV/REEV. Vehicle categories differ with respect to both their battery capacity 

and their typical charging power. All vehicles may be charged with a net power of 10.45 kW in some 

hours of the year, as they are assumed to be connected to (semi-)public fast-charging stations at 

least occasionally. Table 4 provides an overview of EV-related parameters. The cumulative battery 

capacity in the 2030 is in the same order of magnitude as the power storage capacity of existing 

German pumped hydro storage facilities. The table also includes an indicative yearly average value of 

hourly recharging capacities, which reflects different hourly connectivities to charging stations and 

different charging power ratings. 

                                                           
6 Offshore wind feed-in data is available for selected projects in the North Sea only. We derive hourly availabil-
ity factors from 2012 feed-in data provided by the transmission system operator TenneT. 
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Table 3: Exogenous parameters related to electric vehicles 

 2020 2030 

 BAU EM+ BAU EM+ 

 Number of vehicles (million) 

BEV 0.1 0.1 0.9 1.0 

PHEV/REEV 0.3 0.4 2.9 3.7 

Overall 0.4 0.5 3.7 4.8 

 Cumulative battery capacity (GWh) 

BEV 2.4 2.8 21.7 25.2 

PHEV/REEV 3.0 3.9 27.6 35.9 

Overall 5.4 6.7 49.2 61.1 

 Cumulative average hourly charging capacity (GW) 

BEV 0.3 0.3 2.9 3.1 

PHEV/REEV 0.7 0.8 8.7 10.3 

Overall 1.0 1.1 11.6 13.3 

 

4 Results 

4.1 Charging of electric vehicles 

The yearly power consumption of electric vehicles in the different scenarios is generally small com-

pared to overall power demand (Table 5). In 2020, the EV fleet accounts for only around 0.1-0.2% of 

total power consumption. In 2030, EV-related power consumption gets more significant with up to 

7.1 TWh in BAU and nearly 9.0 TWh in EM+, which corresponds to around 1.3% of total power con-

sumption, or 1.6%, respectively. In the user-driven charging modes, the values are generally slightly 

lower compared to cost-driven charging because the electric shares of PHEV/REEV are lower. These 

electric utility factors are around 55% in the 2020 scenarios, and between 60% (user-driven) and 64% 

(cost-driven) in the 2030 scenarios. For comparison, Kelly et al. (2012) estimate a utility factor of 

around 67% based on data from 170,000 vehicles in the U.S. Weiller (2011) also determines utility 

factors for U.S. PHEVs between 50% and 70%, depending on the battery size and car usage. 
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Table 4: Power consumption of electric vehicles 

EV scenario Charging mode Generation capacities EV consump-
tion (TWh) 

Share of total 
load (%) 

2020 2030 2020 2030 

BAU 
User-driven 

Baseline 
0.70 6.92 0.12 1.22 

Cost-driven 0.70 7.10 0.12 1.25 

EM+ 

User-driven 

Baseline 

0.88 8.59 0.16 1.51 

75% fast charge  8.90  1.56 

50% fast charge  8.95  1.57 

25% fast charge  8.95  1.57 

Cost-driven 0.88 8.95 0.16 1.57 

User-driven 

RE+ 

100%  Wind  8.54  1.50 

50%  Wind/PV  8.55  1.50 

100%  PV  8.59  1.51 

Cost-driven 

100%  Wind  8.95  1.57 

50%  Wind/PV  8.95  1.57 

100%  PV  8.95  1.57 

 

 

While overall power consumption of the assumed EV fleets is relatively small, hourly charging loads 

vary significantly over time and sometimes become rather high. This is especially visible in the case of 

user-driven charging, where charging takes place without consideration of current power system 

conditions. Here, EVs are charged as fast as possible given the restrictions of the grid connection.7 

Figure 2 exemplarily shows the average charging power over 24 hours for the 2030 EM+ scenario for 

the two extreme charging cases as well as for the intermediate charging modes, in which at least 

25%, 50%, or 75% of the vehicles’ battery capacities have to be recharged as quickly as possible after 

the vehicles are connected to the grid. User-driven charging results, on average, in three distinct 

daily load peaks. These occur directly after typical driving activities. Almost no charging takes place at 

night, as EVs are fully charged several hours after the last evening trip. In contrast, the cost-driven 

charging mode allows charging EVs during hours of high PV availability, and shifting charging activi-

ties into the night, when other electricity demand is low. Overall, the average charging profile is 

much flatter in the cost-driven mode compared to the user-driven one. 

                                                           
7 We do not consider possible restrictions related to bottlenecks in both the transmission and the distribution 
grids, which may pose barriers to both the fully user-driven and the fully cost-driven charging modes. 
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Figure 2: Average EV charging power over 24 hours (2030, EM+) 

 

Even a slight relaxation of the fully user-driven mode, i.e., reducing 𝑓𝑎𝑠𝑡𝑐ℎ𝑎𝑟𝑔𝑒𝑔𝑜𝑎𝑙 from 1 to 0.75, 

results in a substantially smoothed load profile, while presumably only slightly reducing the users’ 

utility. The maximum average charging load peak in the evening hours accordingly decreases from 

4.9 to 3.1 GW. Reducing 𝑓𝑎𝑠𝑡𝑐ℎ𝑎𝑟𝑔𝑒𝑔𝑜𝑎𝑙 further to 0.5 entails additional smoothing, with a corre-

sponding reduction of the evening load peak to 2.1 GW. 

From a power system perspective, average charging levels of electric vehicles are less relevant than 

the peak loads which EVs induce on the system. Figure 3 shows the electricity system’s load duration 

curve without electric vehicles, i.e., all observed hourly loads in descending order (right axis). In addi-

tion, the sorted additional loads related to EVs for different charging modes are shown (left axis).8  

 

                                                           
8 The Figure shows the differences between sorted load duration curves with and without EVs for different 
charging modes. That is, the differences refer to load deviations between hours with the same position in the 
load duration curve, but not necessarily between the same hours, i.e., the index 𝑡 will typically differ. 
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Figure 3: Impacts of EVs on the load duration curve under different charging modes (2030, EM+) 

 

Figure 3 shows that fully user-driven charging generally steepens the load duration curve of the sys-

tem, as additional power is mainly required on the left-hand side. That is, user-driven charging in-

creases the system load during hours in which demand is already high. On the very left-hand side, the 

peak load in the fully user-driven mode increases by around 3.6 GW, compared to only 1.5 GW in the 

purely cost-driven mode. In contrast, cost-driven charging largely occurs on the right-hand-side of 

the load duration curve, which implies a better utilization of generation capacities during off-peak 

hours. We again find a strong effect of even slightly deviating from the fully user-driven mode: reduc-

ing 𝑓𝑎𝑠𝑡𝑐ℎ𝑎𝑟𝑔𝑒𝑔𝑜𝑎𝑙 from 1 to 0.75 results in substantial smoothing of the residual load curve. If this 

parameter is further reduced to 0.5, the load duration curve closely resembles the one of the fully 

cost-driven charging mode. 

It should be noted that the backstop peak technology is required in the 2030 scenarios under fully 

user-driven charging in order to solve the model. That is, the generation capacities depicted in Figure 

1 do not suffice to serve overall power demand during peak charging hours. The NEP generation ca-

pacities are exceeded by around 220 MW in the peak hour of the user-driven 2030 BAU scenario, and 

by around 360 MW in the respective EM+ scenario. In other words, user-driven charging would raise 

severe concerns with respect to generation adequacy and may ultimately jeopardize the stability of 

the power system with the assumed EV fleets.  
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4.2 Power plant dispatch 

The differences in hourly EV charging patterns discussed above go along with a changed dispatch of 

the power plant fleet.9 While EV-related power requirements in the user-driven case mainly have to 

be provided during daytime, cost-driven charging allows, for example, utilizing idle generation capac-

ities in off-peak hours.  

Comparing dispatch in the 2020 EM+ scenario to the one in the case without any electric vehicles in 

the same year, we find that the introduction of electric vehicles under cost-driven charging mostly 

increases the utilization of lignite plants, which have the lowest marginal costs of all thermal tech-

nologies (Figure 4).10 Generation from mid-load hard coal plants also increases substantially. These 

changes in dispatch are enabled by the charging mode, which allows shifting charging to off-peak 

hours in which lignite and hard-coal plants are under-utilized. Under user-driven charging, power 

generation from lignite cannot be increased that much, as charging occurs in periods in which these 

plants are largely producing at full capacity, anyway. Instead, generation from hard coal grows even 

more than in the cost-driven case. In addition, user-driven charging increases the utilization of–

comparatively expensive–gas-fired plants, as these are the cheapest idle capacities in many recharg-

ing periods, e.g., during weekday evenings. The utilization of pumped hydro storage decreases slight-

ly under cost-driven charging, as optimized charging of electric vehicles diminishes arbitrage oppor-

tunities of storage facilities. In contrast, storage use increases slightly under user-driven charging 

because of increased arbitrage opportunities between peak and off-peak hours. 

 

Figure 4: Dispatch changes relative to scenario without EV (2020, EM+) 

 

                                                           
9 We only present dispatch results for the EM+ scenarios of 2020 and 2030 as well as 2030 RE+. The respective 
dispatch results in the BAU scenarios are very similar, but less pronounced. 
10 Figure 8 in the Appendix shows the dispatch results of the scenarios without EVs, against which the EV-
related dispatch changes presented in Figures 4-6 may be compared. 
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Figure 5 shows respective changes in dispatch outcomes for the 2030 EM+ scenario. Compared to 

2020, the introduction of electric vehicles has a much stronger effect in 2030, as the overall number 

of electric vehicles is much higher. While the direction of dispatch changes is largely the same as in 

2020, there is a slight shift from lignite to gas: under cost-driven charging, the relative increase in the 

utilization of lignite plants is less pronounced compared to 2020, whereas the utilization of combined 

cycle gas turbines (CCGT) is higher. Under user-driven charging, this effect–which can be explained by 

an exogenous decrease of lignite plants and a corresponding increase of gas-fired generation capaci-

ties (cf. Figure 1)–is even more pronounced, such that most of the additional power generation 

comes from CCGT plants. Worth mentioning, the additional flexibility brought to the system by cost-

driven charging also enables additional integration of energy from renewable sources. Pumped stor-

age, which is another potential source of flexibility, is accordingly used less in the cost-driven case. It 

can also be seen that reducing the fast charging requirement from 100% to 75% strongly alters the 

dispatch into the direction of the cost-driven outcomes. Reducing the requirement to 50% entails 

largely the same dispatch as the fully cost-driven charging mode. 

 

Figure 5: Dispatch changes relative to scenario without EV (2030, EM+) 

 

In the cases presented so far, we have assumed that the power plant fleets of the years 2020 or 2030 

do not change between the cases with and without electric vehicles. While this assumption proves to 

be unproblematic with respect to overall generation capacities in the cost-driven charging mode, we 

are interested in how results change if the power plant fleet is adjusted to the introduction of electric 

mobility. While there are many thinkable changes to the generation portfolio11, we are particularly 

interested in cases in which the introduction of electric vehicles goes along with a corresponding 

increase in renewable energy generation. In fact, German policy makers have directly linked the in-

                                                           
11 For example, additional open cycle gas turbines may be beneficial under user-driven charging, while addi-
tional base-load plants may constitute a least-cost option under cost-driven charging. Note that we do not 
determine cost-minimal generation capacity expansion endogenously, as we use a dispatch model in which 
generation capacities enter as exogenous parameters. 



 

14 
 

troduction of electric vehicles to the utilization of renewable power (Bundesregierung 2011). Yet 

results presented so far have shown that the additional energy used to charge EVs is mainly provided 

by conventional power plants, and particularly by emission-intensive lignite plants in the cost-driven 

charging mode. 

In the 2030 RE+ model runs, we add onshore wind and/or photovoltaics capacities to such an extent 

that their potential yearly feed-in exactly matches the amount of energy required to charge EVs. We 

distinguish three cases in which this power is generated either with 100% onshore wind, 100% PV, or 

fifty-fifty (Table 6).12 The required PV capacities are much larger compared to onshore wind because 

of PV’s lower average availability. In the cost-driven charging mode, capacities are slightly higher 

than in the user-driven mode, as the overall power consumption of PHEV and REEV is higher. 

 

Table 5: Additional generation capacities in RE+ scenarios (in MW) 

Charging mode 100% Wind 100% PV 50% Wind/PV 

Wind  PV 

User-driven 6,176 13,235 3,088 6,617 

Cost-driven 6,438 13,795 3,219 6,897 

 

The outcomes of the RE+ cases may be compared to the 2030 scenario without EVs and without addi-

tional renewables. This may be interpreted as if the deployment of EVs was strictly linked to an addi-

tional deployment of renewables, which would not have occurred without the introduction of elec-

tric mobility. Under user-driven charging, lignite plants are used less, while gas-fired plants and 

pumped hydro stations are increasingly utilized. This can be explained by increasing flexibility re-

quirements in the power system induced by both additional (inflexible) EVs and fluctuating renewa-

bles. In contrast, power generation from lignite increases under cost-driven charging, whereas gas-

fired plants and pumped hydro facilities are used less. This is because system-optimized EV charging 

brings enough flexibility to the power system to replace pumped hydro and gas-fired plants and at 

the same time increase generation from rather inflexible lignite plants. 

Finally, we provide further details on the integration of fluctuating renewables. It has often been 

argued that future electric vehicle fleets may help to foster the system integration of fluctuating re-

newables (compare Hota et al. 2014). Our model results show that the potential of EVs to reduce 

renewable curtailment is rather low under user-driven charging, but sizeable in case of cost-driven 

charging (Figure 6).13 In 2020, very little curtailment takes place, and the effect of EVs on curtailment 

is accordingly negligible. In the 2030 EM+ scenario, about 1.3 TWh of renewable energy cannot be 

used in the case without EVs, corresponding to 0.65% of the yearly power generation potential of 

                                                           
12 Additional deployment of renewables involves additional capital and fixed costs. These are not considered 
here. Onshore wind and PV as well incur different capital costs. Yet we do not aim to determine a cost-
minimizing portfolio; rather, we are interested in the effects of different technology choices on dispatch out-
comes. 
13 In addition, electric vehicles may indirectly foster the system integration of renewable power generators by 
providing reserves and other ancillary services energies, which are increasingly required in case of growing 
shares of fluctuating renewables. 
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onshore wind, offshore wind and PV. User-driven EV charging decreases this value to about 1.1 TWh 

(0.55%), while only 0.6 TWh of renewables have to be curtailed under cost-driven charging (0.29%). 

Accordingly, optimized EV charging allows slightly increasing the overall utilization of renewables. 

Curtailment is generally higher in the RE+ scenarios. Among the three different portfolios of addition-

al renewable generators, the one with 100% PV has the lowest curtailment levels (1.9 TWh or 0.89% 

in the case without electric vehicles), while curtailment is highest in the one with 100% onshore wind 

(2.3 TWh or 1.07%). Cost-driven charging results in much lower levels of renewable curtailment com-

pared to user-driven charging. 

 

 

Figure 6: Renewable curtailment  

 

4.3 CO2 emissions 

We have shown that EVs may increase the utilization of base-load capacities as well as fluctuating 

renewables.14 While the first tends to increase CO2 emissions, the latter has an opposite effect. Both 

effects overlap. The net effect on emissions is shown in Figure 7, which features specific emissions of 

both overall power consumption and EV charging electricity. The latter are calculated as the differ-

ence of overall power plants’ CO2 emissions between the respective case and the scenario without 

electric vehicles, related to the overall power consumption of EVs.15   

 

                                                           
14 It should be noted that the dispatch model not only considers CO2 emissions related to the actual generation 
of power, but also to the start-up of thermal power plants. 
15 The analysis accordingly focuses on direct CO2 emissions from the operation of power plants, and is not 
based on a full life-cycle assessment of electric vehicles. 



 

16 
 

 

Figure 7: Specific CO2 emissions 

 

Due to ongoing deployment of renewable generators, specific CO2 emissions of the overall power 

consumption decrease from around 490 g/kWh in 201016 to around 400 g/kWh in 2020, to less than 

330 g/kWh in the 2030 BAU and EM+ scenarios, and to around 320 g/kWh in the 2030 RE+ scenarios. 

In the BAU and EM+ scenarios of both 2020 and 2030, specific emissions of the EV charging electricity 

are substantially larger than average specific emissions, as it is largely generated from emission-

intensive technologies like lignite and hard-coal. The improvements in renewable integration related 

to EVs are by far outweighed by the increases in power generation from conventional plants. Only in 

the 2030 RE+ scenarios, in which the introduction of electric vehicles goes along with additional re-

newable generation capacities, specific emissions of the charging electricity are well below the sys-

tem-wide average. Note that we compare the RE+ scenarios to the same reference scenario as the 

2030 EM+ runs, i.e., a 2030 scenario without EVs and without additional renewable generation capac-

ities. The system-wide emission effect of additional renewables is thus fully attributed to electric 

vehicles, even if EVs are not fully charged with renewable power during the actual hours of charging. 

Among the two different charging strategies, the cost-driven mode always leads to higher emissions 

compared to the user-driven mode, as the first allows for switching some charging activities into 

hours in which lignite plants are under-utilized, whereas the latter forces charging to happen mostly 

in hours in which lignite and hard-coal plants are already fully utilized. Interestingly, this outcome 

contrast the findings of Göransson et al. (2010), which show for a Danish case study that user-driven 

charging increases system-wide CO2 emissions, whereas cost-driven charging decreases emissions. 

These differences can be explained by different power plant fleets in the two case studies: The Dan-

ish system has low capacities of emission-intensive generators and very high shares of wind, with 

accordingly high levels of curtailment. In contrast, our German application features much higher ca-

                                                           
16 According to model results. The officially reported CO2 intensity for 2010 is slightly higher. Yet in this context, 
only the relation between different scenarios is relevant and not so much absolute emission levels. 
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pacities of emission-intensive generators as well as lower shares of wind power. Accordingly, the 

increase in power system flexibility related to cost-driven EV charging is predominantly used for re-

ducing renewable curtailment in the Danish case and for increasing the utilization of lignite and hard-

coal plants in Germany. 

5 Discussion of limitations 

We briefly discuss some of the model limitations and their likely impacts on results. First, the future 

development of exogenous model parameters is generally uncertain. This refers, in particular, to the 

future power plant fleet. We have thus decided to largely draw on the assumptions of a well-

established scenario (50Hertz et al. 2013). In this way, meaningful comparisons to other studies 

which lean on the same scenario are possible. On the downside, the power plant fleet is necessarily 

not optimized for the integration of electric vehicles. This shortcoming, however, should not have a 

large impact on results, as overall power consumption of electric vehicles is very small compared to 

power demand at large.  

In Appendix A.3, we provide the dispatch outcomes for additional sensitivity analyses that include 

alternative assumptions on the power plant fleet, higher CO2 prices, and cross-border exchange. We 

find that general dispatch results hardly change in most sensitivity runs, except for the case in which 

CO2 prices are assumed to double, as this reverses the merit order of gas- and coal-fired plants. 

While using projections of future power generation from fluctuating renewables, drawing on historic 

feed-in data of other years than 2010 may lead to slightly different dispatch results. What is more, 

calculating availability factors from feed-in time series neglects potential smoothing effects related to 

future changes in generator design or changes in the geographical distribution. This may result in 

exaggerated assessments of both fluctuation and surplus generation, as discussed by Schill (2014).  

Next, our dispatch model assumes perfectly uncongested transmission and distribution networks. 

This assumption appears to be reasonable with respect to the transmission grid, as the NEP foresees 

perfect network expansion. Yet on the distribution level, a massive deployment of electric vehicles 

may lead to local congestion. Such effects can hardly be considered in a power system model. It is 

reasonable to assume that congestion in distribution grids may put additional constraints on the 

charging patterns of electric vehicles. While this effect should in general be relevant for both the 

user-driven and the cost-driven charging mode, distribution grid bottlenecks may be particularly sig-

nificant for the user-driven mode, as charging is carried out largely in peak-load periods in which the 

distribution grid is already heavily used. 

In addition, we abstract from interactions with neighboring countries. In the context of existing inter-

connection and plans for further European market integration, this assumption appears to be rather 

strong. Yet considering power exchange with neighboring countries would require a much larger 

model with detailed representations of these countries’ power plant fleets, and according parame-

ters on future power system and EV developments in these countries. Solving a large European unit 

commitment model for a full year and various scenarios would be very challenging. By treating the 

German power system as an island, we may generally overestimate the flexibility impacts of electric 

vehicles such as additional integration of lignite and renewables, as well as peak capacity problems in 

the user-driven mode, as exchange with neighboring countries would entail additional flexibility 
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which may mitigate both peak and off-peak load situations. Our results may thus be interpreted as 

an upper boundary for the flexibility impacts of EVs on the German power system. In fact, the effects 

of EVs on lignite-fired power generation are mildly mitigated compared to the EM+ runs in a sensitivi-

ty analysis in which we fix the hourly pattern of net power exchange with neighboring countries to 

2010 levels. 

Next, we only consider G2V power flows and abstract from V2G flows. This assumption may be justi-

fied for the wholesale market, as wholesale price differences likely do not suffice to make V2G eco-

nomically viable with respect to battery degradation costs (Schill 2011, Loisel et al. 2014). The provi-

sion of reserves and other ancillary services by V2G, however, appears to be more promising (An-

dersson et al. 2010, Sioshansi and Denholm 2010, Lopes et al. 2011). We also abstract from the pro-

vision of reserves, which may result in underestimated levels of conventional generation, and accord-

ingly underestimated renewable curtailment. 

Finally, it should be noted that cost-driven charging generally reduces the utility of vehicle owners 

compared to the user-driven mode. Under cost-driven charging, users would have to make regular 

forecasts about when they use their cars again, and how long the next trips will be. In the real-world, 

this may pose a considerable barrier to the adoption of a purely cost-driven charging mode. On the 

other hand, charging costs are lower in the cost-driven mode, as the EV owner–or the retailer, or 

some other service provider, respectively–can make use of lower wholesale prices. Further savings 

should be possible if not only the wholesale market, but also reserve markets and other ancillary 

services could be accessed, probably in combination with V2G applications. Yet the feasibility of such 

strategies as well as the quantification of utility losses and cost savings remain questions for future 

research. In any case, a partly cost-driven charging mode as modeled here (for example, with 

𝑓𝑎𝑠𝑡𝑐ℎ𝑎𝑟𝑔𝑒𝑔𝑜𝑎𝑙 of 50%), may provide a feasible middle ground between users’ preferences and 

power system requirements. 

6 Conclusions 

We analyze the integration of future fleets of electric vehicles into the German power system for 

various scenarios of 2020 and 2030. We use a numerical dispatch model with a unit commitment 

formulation which minimizes overall dispatch costs over a full year to study the effects of different 

charging modes on the load curve, dispatch, costs, and emission. By applying a novel model formula-

tion, we are able not only to simulate extreme charging modes, but also more realistic intermediate 

ones. 

Based on our findings we suggest several policy-relevant conclusions. First, the overall energy re-

quirements of electric vehicles should not be of concern to policy makers for the time being, whereas 

their impact on peak loads should be. Not only with respect to costs, but also to system security, 

cost-driven charging is clearly preferably to the user-driven mode. Because of generation adequacy 

concerns, user-driven charging may have to be restricted, at the latest if the vehicle fleet gets as 

large as in our 2030 scenarios, unless high charging tariffs render user-driven charging unattractive, 

anyway.  

Second, policy makers should be aware that cost-optimized charging not only increases the utiliza-

tion of renewable energy, but also of low-cost emission-intensive plants. If the introduction of elec-
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tric mobility is linked to the use of renewable energy, as repeatedly stated by the German govern-

ment, it has to be made sure that a corresponding amount of renewables is added to the system. 

With respect to CO2 emissions, an additional expansion of renewables is particularly important as 

long as substantial–and increasingly under-utilized–capacities of emission-intensive generation tech-

nologies are still present in the system. From a system perspective it does not matter if these addi-

tional renewables are actually fully utilized by EVs exactly during the respective hours of charging; 

rather, the net balance of the combined introduction of electric mobility and renewables compared 

to a baseline without EVs and without additional renewables is relevant. 

Third, cost-driven charging, which resembles market-driven or profit-optimizing charging in a perfect-

ly competitive market, can only lead to emission-optimal outcomes if emission externalities are cor-

rectly priced – as, for example, in a sensitivity analysis that assumes double CO2 prices. Otherwise, 

cost-driven charging may lead to above-average specific emissions, and even to higher emissions 

compared to the user-driven mode. Accordingly, policy makers should make sure that CO2 emissions 

are adequately priced. Otherwise, some kind of emission-oriented charging strategy would have to 

be applied, which is possible in theory (cf. Sioshansi and Miller, 2011), but very unlikely to be imple-

mented in practice. 

Fourth, controlled charging of future electric vehicle fleets interacts with other potential sources of 

flexibility in the system. Our analysis indicates that the utilization of pumped hydro storage substan-

tially decreases in the cost-driven mode compared to user-driven charging. The same may hold for 

other storage technologies and load shifting. Accordingly, the viability of such flexibility options de-

pends on the size of the future EV fleet, as well as on the charging mode. 

Finally, we conclude that even a slight relaxation of fully user-driven charging leads to much smooth-

er charging profiles. That is, undesirable EV impacts on the system peak load could be substantially 

reduced if vehicle owners would agree to have not the full battery capacity charged as quickly as 

possible after connecting to the grid, but only a (possibly large) fraction of it. We show that a large 

part of the system benefits generated by fully cost-driven charging could already be realized with a 

fast charging requirement of around 50% or even 75%. This suggests that EV user preferences–such 

as not giving control over charging away completely, or being able to make previously unplanned 

trips–and power system requirements could be reconciled by a charging strategy which makes sure 

that not the full battery capacity is charged as soon as possible. 
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Appendix 

A.1 The Model 

Table 6: Sets, parameters, and variables related to electric vehicles 

Sets Description Unit 

𝒆𝒗 ∈ 𝑬𝑽 Set of 28 EV profiles  
Parameters 

𝒃𝒂𝒕𝒄𝒂𝒑𝒆𝒗 EV Battery Capacity kWh 
𝒄𝒉𝒂𝒓𝒈𝒆𝒎𝒂𝒙𝒆𝒗,𝒕 Hourly power rating of the charge connection (0 when car is in use or 

parked without grid connection) 
kW 

𝒄𝒐𝒏𝒔𝒆𝒗,𝒕 Hourly EV power consumption kWh 

𝜼𝒆𝒗 EV charging efficiency % 
𝒇𝒂𝒔𝒕𝒄𝒉𝒂𝒓𝒈𝒆𝒈𝒐𝒂𝒍 Restricts the relative battery charge level that should be reached as 

fast as possible (1 for fully user-driven charging, 0 for cost-driven)  
 

𝒑𝒆𝒏𝒂𝒍𝒕𝒚𝑷𝒉𝒆𝒗𝒇𝒖𝒆𝒍 Penalty for non-electric PHEV operation mode €/MWh 

𝒑𝒉𝒆𝒗𝒆𝒗 Defines whether an EV is a PHEV/REEV (1 if yes, 0 otherwise)  
𝒏𝒆𝒗 Number of EVs per load profile  
Binary variables 

𝑭𝑼𝑳𝑳𝑪𝑯𝑨𝑹𝑮𝑬𝒆𝒗,𝒕 1 if full charging power is required, i.e., when the charge level is be-
low 𝑓𝑎𝑠𝑡𝑐ℎ𝑎𝑟𝑔𝑒𝑔𝑜𝑎𝑙, and 0 otherwise 

 

Continuous variables 

𝑪𝒉𝒂𝒓𝒈𝒆𝒆𝒗,𝒕 Cumulative EV charging power MW 
𝑪𝒉𝒂𝒓𝒈𝒆𝒍𝒆𝒗𝒆𝒗,𝒕 Cumulative EV battery charge level MWh 
𝑷𝒉𝒆𝒗𝒇𝒖𝒆𝒍𝒆𝒗,𝒕 Cumulative PHEV conventional fuel use MWh 
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Table 7: Sets, parameters, and variables of the basic model 

Sets Description Unit 

𝒊 ∈ 𝑰 Set of thermal power plant blocks of various technologies  
𝒋 ∈ 𝑱 Set of thermal storage technologies  
𝒓𝒆𝒔 ∈ 𝑹𝑬𝑺 Set of fluctuating renewable technologies  
𝒕, 𝒕𝒕 ∈ 𝑻 Time set hours 
Parameters 

𝒂𝒗𝒂𝒊𝒍𝒊,𝒕 Availability of thermal blocks % 

𝒂𝒗𝒂𝒊𝒍𝒃𝒊𝒐𝒕 Availability of biomass generation % 
𝒅𝒆𝒎𝒕 Hourly power demand (without EV consumption) MWh 
𝒆𝒏𝒆𝒓𝒈𝒚𝒎𝒂𝒙𝒃𝒊𝒐 Yearly biomass power generation budget MWh 
𝒐𝒕𝒉𝒆𝒓𝒈𝒆𝒏𝒕 Exogenous other hourly power generation (hydro, waste) MWh 

𝒑𝒆𝒏𝒂𝒍𝒕𝒚𝑷𝒆𝒂𝒌 Penalty for use of backstop peak technology €/MWh 

𝒒𝒎𝒂𝒙𝒊 Hourly Generation capacity of thermal blocks MWh 
𝒒𝒎𝒂𝒙𝒃𝒊𝒐 Hourly biomass generation capacity MWh 
𝒒𝒎𝒊𝒏𝒊 Minimum hourly generation of thermal blocks MWh 
𝒓𝒆𝒔𝒂𝒗𝒂𝒊𝒍𝒓𝒆𝒔,𝒕 Hourly availability of fluctuating renewables MWh 

𝒔𝒄𝒊 Start-up costs of thermal blocks € 
𝒔𝒕𝒊𝒏𝒎𝒂𝒙𝒋 Hourly storage loading capacity MWh 

𝒔𝒕𝒊𝒎𝒆𝒊 Start-up time of thermal blocks Hours 
𝒔𝒕𝒍𝒆𝒗𝒎𝒂𝒙𝒋 Maximum storage level MWh 

𝒔𝒕𝒐𝒖𝒕𝒎𝒂𝒙𝒋 Hourly storage discharging capacity MWh 

𝒗𝒄𝒊 Variable generation costs of thermal blocks €/MWh 
𝒗𝒔𝒕𝒄𝒋 Variable generation costs of storage technologies €/MWh 

Binary variables 

𝑺𝑻𝒊,𝒕 Start-up variable of thermal blocks (1 if block is started up in period t, 
0 otherwise) 

 

𝑼𝒊,𝒕 Status variable of thermal blocks (1 if block is generating, 0 otherwise)  
Continuous variables 

𝑩𝒊𝒐𝒕 Generation from biomass MWh 
𝑪𝒐𝒔𝒕 Total dispatch costs € 
𝑹𝒆𝒔𝒄𝒖𝒓𝒕𝒓𝒆𝒔,𝒕 Hourly curtailment of fluctuating renewables MWh 
𝑹𝒆𝒔𝒊𝒏𝒕𝒓𝒆𝒔,𝒕 Hourly system integration of fluctuating renewables MWh 

𝑷𝒆𝒂𝒌𝒕 Hourly generation of backstop peak technology MWh 
𝑸𝒊,𝒕 Quantity of power generated by thermal block i in hour t MWh 
𝑺𝒕𝒊𝒏𝒋,𝒕 Hourly power fed into storage MWh 

𝑺𝒕𝒍𝒆𝒗𝒋,𝒕 Hourly storage level MWh 

𝑺𝒕𝒐𝒖𝒕𝒋,𝒕 Hourly power generation from storage MWh 

 

Table 6 lists all sets, parameters, and variables related to electric vehicles. The complementary Table 

7 includes all other sets, parameters, and variables of the basic dispatch model. EV-related equations 

have already been described in section 3. In the following, we provide the analytical formulation of 

the remainder of the model. 
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𝐶𝑜𝑠𝑡 = ∑(𝑣𝑐𝑖𝑄𝑖,𝑡 + 𝑠𝑐𝑖𝑆𝑇𝑖,𝑡)

𝑖,𝑡

+ ∑ 𝑣𝑠𝑡𝑐𝑗𝑆𝑡𝑜𝑢𝑡𝑗,𝑡

𝑗,𝑡

+ ∑ 𝑝𝑒𝑛𝑎𝑙𝑡𝑦𝑃𝑒𝑎𝑘𝑃𝑒𝑎𝑘𝑡

𝑡

+ ∑ 𝑝𝑒𝑛𝑎𝑙𝑡𝑦𝑃ℎ𝑒𝑣𝑓𝑢𝑒𝑙𝑃ℎ𝑒𝑣𝑓𝑢𝑒𝑙𝑒𝑣,𝑡

𝑒𝑣,𝑡

 
 (1) 

𝑄𝑖,𝑡 ≤ 𝑞𝑚𝑎𝑥𝑖𝑎𝑣𝑎𝑖𝑙𝑖,𝑡𝑈𝑖,𝑡 ∀𝑖, 𝑡 (2) 

𝑄𝑖,𝑡 ≥ 𝑞𝑚𝑖𝑛𝑖𝑎𝑣𝑎𝑖𝑙𝑖,𝑡𝑈𝑖,𝑡 ∀𝑖, 𝑡 (3) 

𝑆𝑇𝑖,𝑡 ≥ 𝑈𝑖,𝑡 − 𝑈𝑖,𝑡−1 ∀𝑖, 𝑡 (4) 

                                        𝑈𝑖,𝑡−1 − 𝑈𝑖,𝑡 ≤ 1 − 𝑈𝑖,𝑡𝑡 
∀𝑖, 𝑡 𝑤𝑖𝑡ℎ  

𝑡 ≤ 𝑡𝑡 ≤ 𝑡 + 𝑠𝑡𝑖𝑚𝑒𝑖 − 1  
(5) 

𝑅𝑒𝑠𝑖𝑛𝑡𝑟𝑒𝑠,𝑡 + 𝑅𝑒𝑠𝑐𝑢𝑟𝑡𝑟𝑒𝑠,𝑡 = 𝑟𝑒𝑠𝑎𝑣𝑎𝑖𝑙𝑟𝑒𝑠,𝑡 ∀𝑟𝑒𝑠, 𝑡 (6) 

𝑅𝑒𝑠𝑐𝑢𝑟𝑡𝑟𝑒𝑠,𝑡 ≤ 𝑟𝑒𝑠𝑎𝑣𝑎𝑖𝑙𝑟𝑒𝑠,𝑡 ∀𝑟𝑒𝑠, 𝑡 (7) 

𝐵𝑖𝑜𝑡 ≤ 𝑞𝑚𝑎𝑥𝑏𝑖𝑜 ∗ 𝑎𝑣𝑎𝑖𝑙𝑏𝑖𝑜𝑡 ∀𝑡 (8) 

∑ 𝐵𝑖𝑜𝑡

𝑡

≤ 𝑒𝑛𝑒𝑟𝑔𝑦𝑚𝑎𝑥𝑏𝑖𝑜  (9) 

𝑆𝑡𝑙𝑒𝑣𝑗,𝑡 = 𝑆𝑡𝑙𝑒𝑣𝑗,𝑡−1 + 𝑆𝑡𝑖𝑛𝑗,𝑡𝜂𝑗 − 𝑆𝑡𝑜𝑢𝑡𝑗,𝑡 ∀𝑗, 𝑡 (10) 

𝑆𝑡𝑙𝑒𝑣𝑗,𝑡 ≤ 𝑠𝑡𝑙𝑒𝑣𝑚𝑎𝑥𝑗 ∀𝑗, 𝑡 (11) 

𝑆𝑡𝑖𝑛𝑗,𝑡 ≤ 𝑠𝑡𝑖𝑛𝑚𝑎𝑥𝑗 ∀𝑗, 𝑡 (12) 

𝑆𝑡𝑜𝑢𝑡𝑗,𝑡 ≤ 𝑠𝑡𝑜𝑢𝑡𝑚𝑎𝑥𝑗 ∀𝑗, 𝑡 (13) 

∑ 𝑄𝑖,𝑡

𝑖

+ ∑ 𝑅𝑒𝑠𝑖𝑛𝑡𝑟𝑒𝑠,𝑡

𝑟𝑒𝑠

+ 𝐵𝑖𝑜𝑡+𝑃𝑒𝑎𝑘𝑡 + 𝑜𝑡ℎ𝑒𝑟𝑔𝑒𝑛𝑡 + ∑(𝑆𝑡𝑜𝑢𝑡𝑗,𝑡 − 𝑆𝑡𝑖𝑛𝑗,𝑡)

𝑗

= 𝑑𝑒𝑚𝑡 + ∑ 𝐶ℎ𝑎𝑟𝑔𝑒𝑒𝑣,𝑡

𝑒𝑣

 
∀𝑡 (14) 

 

The objective function (1) sums up variable generation costs of thermal plants, including start-up 

costs of single blocks, variable storage costs as well as penalties for using the backstop peak load 

technology and for non-electric operation of PHEV/REEV. Equations (2) and (3) establish maximum 

and minimum generation levels for thermal blocks. Note that the binary status variable 𝑈𝑖,𝑡 is 1 if the 

plant is online and 0 otherwise. Equation (4) ensures consistency between the binary status and 

start-up variables of thermal generators. (5) enforces a start-up time restriction. Equations (6) and (7) 

determine hourly system integration as well as curtailment of fluctuating renewables such as on-

shore and offshore wind power and solar PV. Equation (8) is an hourly power generation capacity 

restriction for biomass, whereas (9) constrains overall biomass utilization, for example, because of 

resource constraints. Equation (10) connects storage levels of subsequent periods, given inflows and 

outflows. Here, roundtrip efficiency losses are attributed to storage loading. (11) to (13) establish 

upper limits on the storage level, the loading capacity as well as the discharging capacity. Finally, the 

market clearing condition (14) ensures that overall supply equals demand in all hours. 

Thermal power plants are modeled as single blocks in a unit commitment formulation with respec-

tive start-up costs and start-up times; in contrast, other generation technologies such as storage, 

biomass and variable renewables are modeled in a linear way as aggregated capacities which are 

assumed to be perfectly flexible. Only in the 2010 scenario, we assume generation from biomass to 

be completely inflexible, i.e., fixed to average levels. In addition, we include inflexible power genera-
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tion from run-of river hydro and waste incineration as an exogenous parameter 𝑜𝑡ℎ𝑒𝑟𝑔𝑒𝑛𝑡, drawing 

on historic data. 

A.2  Dispatch outcomes without EVs 
Figure 8 shows power plant dispatch of the scenarios without electric vehicles for 2020, the 2030 

baseline, and the 2030 RE+ sensitivities. Between 2020 and 2030, generation from wind and PV as 

well as CCGT plants increases, as the respective capacities grow (cf. Figure 1). On the contrary, gen-

eration from lignite and hard coal goes down and nuclear power is phased out completely. 

 

 

Figure 8: Dispatch outcomes for scenarios without EVs 

 

A.3  Sensitivity analyses 
Results of dispatch models generally depend on the input parameters used. This concerns, for exam-

ple, assumptions on the power plant fleet, future CO2 prices, and power exchange with neighboring 

countries. In fact, the uncertainties concerning the future development of the German power plant 

portfolio may be larger than the size of the EV fleet assumed here. We thus carry out additional sen-

sitivity analyses for the year 2030 to study the effect of such parameter variations. 

Two sensitivities deal with changes of the power plant fleet: “No lignite” assumes that all lignite 

plants are shut down by 2030 and fully substituted by CCGT plants with block sizes of 500 MW each. 

This sensitivity is of interest against the background of the ongoing debate on the compatibility of 

lignite-fired power generation with German CO2 emission targets. In a sensitivity “20% more RES”, 

we assume the capacities of onshore and offshore wind power as well as PV to be 20% larger com-

pared to EM+. This assumption reflects the fact that renewable expansion was much faster in the last 
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decade compared to what was planned by the government.17 In another sensitivity called “Double 

CO2 price” we assume that CO2 prices double compared to what is assumed in EM+ for 2030, i.e., 

reach 82 Euro per ton. A fourth sensitivity deals with the simplifying assumption of treating the Ger-

man power system as an island: In “Exchange”, we fix the hourly net power exchange with neighbor-

ing countries to 2010 levels. The respective time series is derived from data published by the four 

German transmission system operators.18 

For each of these sensitivities, we carry out three model runs: a reference case without electric vehi-

cles, a fully user-driven case, and a fully cost-driven one. We then compare dispatch outcomes of the 

EV scenarios to the respective runs without EVs. Results presented in Figure 9 show that major 

changes of general dispatch outcomes occur only under the assumption of double CO2 prices. 

 

Figure 9: Sensitivity analyses: dispatch changes relative to respective scenarios without EV 

In “No lignite”, additional generation from hard coal and CCGT plants substitutes for the phased-out 

lignite plants. The relative share of CCGT under the cost-driven charging mode is higher than in EM+, 

as the hard coal plants are often producing at full capacity even in the case without EVs. Accordingly, 

                                                           
17 In contrast to the RE+ scenario, we do not link the renewable expansion to the introduction of electric vehi-
cles, i.e., the additional renewable capacities are also foreseen in the respective reference scenario without 
electric vehicles. 
18 We chose the year 2010 because it is consistent with the load data and the renewable feed-in patterns. Ac-
cording to data provided by 50Hertz, Amprion, TenneT TSO, and TransnetBW, net exports amounted to around 
5 TWh in 2010, with hourly maximum net exports of 6 TWh and maximum net imports of 7 TWh. 
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specific CO2 emissions of EVs also decrease compared to EM+. Yet the general finding that cost-driven 

charging involves more power generation from emission-intensive coal plants and less from CCGT 

compared to user-driven charging also holds in this sensitivity. 

A major change occurs in the sensitivity “Double CO2 price”. Under this assumption, the merit order 

changes such that CCGT plants provide the cheapest option to charge EVs. Accordingly, CCGT is now 

the predominant source of charging electricity in the cost-driven mode, while lignite and hard coal 

achieve only minor shares. In contrast, user-driven charging now involves larger amounts of electrici-

ty from lignite and hard coal plants, as cheaper CCGT plants are already producing at full capacity in 

many hours of vehicle charging. This sensitivity also indicates that cost-driven charging goes along 

with less carbon-intensive power generation if CO2 is priced sufficiently. 

In the “20% more RES” sensitivity, results generally do not change much compared to EM+. EVs lead 

to some additional integration of wind power and PV; yet most of the charging electricity still comes 

from lignite and hard coal plants in the cost-driven mode, and from hard coal and CCGT plants in the 

user-driven mode, respectively. The reason is that most of the additional renewable power is already 

used in the reference scenario without electric vehicles. 

Finally, “Exchange” only leads to minor changes compared to EM+. Assuming hourly net power ex-

change with neighboring countries as in 2010 leads to slightly higher full-load hours of lignite and 

hard coal plants compared to EM+ already in the case without electric vehicles. The effect of EV 

charging on lignite is thus mildly mitigated: in the cost-driven mode, charging power from lignite now 

amounts to 2.6 TWh, compared to 2.9 TWh in EM+. Yet the overall change remains small because of 

the rather low historic exchange levels. The effect should become stronger if further renewable ex-

pansion in Germany, combined with increased interconnector capacity, leads to higher cross-border 

power exchange. 
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